—、填空题(1)【答案】sint——cost4芒【解】d2ydi71991年数学(一)真题解析djr/dzddydy/dtAx——sint2^cost一2sintAx/dtdz4z2~2?sint—Zcost4芒(2)【答案】dz—Qdy.【解】方法一+Vx2+y2+z2=72~两边对jc求偏导得z+z牛djcyz+xy^+____________抵Vx2+y2+z20,解得聖ox=1;HW+Vx2+y2+z2=a/2两边对y求偏导得Idzy+zdy.2丄".2丄~2=一罷,故dz|(i,o,-i)=d«r—^/2dy.方法二jcyz+Vjc2y2+z2=V2~两边求微分得d(xyz)+d(Vx2y2z2)=0,即wdz+zzdy+pdz+’归+/业土三空=0,vx2+y2+z2将=(1,0,—1)代入得dzI(i,o,-i)=dw—血如(3)【答案】x—3y+n+2=0.【答案】显然M0(1,2,3)为所求平面上的点,所求平面的法向量为兀={1,0,—1}X{2,1,1}={1,—3,1},所求平面为兀:(无—1)—3(夕一2)+(n—3)=0,即7r:j:—3,+n+2=0.⑷【答案】一斗.Z【解】由(1+处2)3—1〜岂工29COSX〜---JC2,得牛=----,故Q=-------・0CiLt乙-2(5)【答案】o0xz+xyt—■+0,解得字-20050000y丄2_3~~3【解】令B=5221,C=1-211,则A-1B1OoL由5210101-2101_2由2101210101-25,得旷=1-2—251-21-210/107£11oV\01丄,得L=2_1-200\0177-2500故AT00丄2_I00I7二、选择题(1)【答案】(D).【解】由limy=1,得3/=Zf81为曲线y21+e1_21—e_x的水平渐近线由limy0214-e_x=8,得工=0为曲线y=■-—r的铅直渐近线,应选(D).1_尸(2)【答案】(B).【解】/(0)=In2,/(x)=2odr+In2两边对求导得ff(x)=2f(工),Ce2x.解得/(j;)=Ce2dj由/(0)=1口2得0=In2,故/(x)=e2xIn2,应选(E).(3)【答案】(C)・【解】令S:)=ax+a34-------a2n-i,S^2)=a2+a4-------a2n,S務)=ax—a2~\-------a2n-1—a2n=Sf—Sf,S”=5+如------a”,由题意得limSj)=5,limS^=2,于是limS^2)=limS:>—limS;?=3,因为limS2n=limS严+limSY>=8,所以级数乞a”等于8,应选(C)・”foon-*°°n-*°°n=l⑷【答案】(A)・【解】令0={(h,»)1=工W0,hyW—x},D3={(龙,歹)|一夕£工£夕,0冬夕£1},由对称性得Jj(xy+cosxsiny)dxdy=0,D2JJ{jcy+cosjcsiny)dzdy=D3(5)【答案】(D)・【解】由ABC=E得BC=A-1,则BCA=A_1A=E,应选(D).jjcosxsinydxdy=2D3Jjcosxsinydjcdy,应选(A).Di(1)【解】lim(cosT^)"=lim{[1+(cos>/F—I)]®"-'},乂r—0+工-*0十4贝U/=—a3—4a+7t.lim—•(cos"fx"—1)hlimcos]:二+工e1lim工”fo+工=e={4工,6y,2n}(i,ij)(2)【解】法向量"={4,6,2},方向余弦为cosac3——,COS0=------,COSya/T4714]=Tn9则rdn(3)【解】du_3工du714.丄+丄.du°》z\/6j72+8y2z42,丄=_714Tn/TT71473/2=E绕z=0z轴旋转而成的曲面为S-x2+y2=2n,268』3u丿6工2+8y2p2z%/6jc2+8y268(1,1,1)yrr(1,1,1)a/TT(1,1,1)=—yiT,8则。={(工,』,N)|(H,y)GDz,0WnW4},其中2={(j:9y)IJ:2+j^22z},x2+y2+2:)dv=JdzJJ(x2+y2+z)djrdj/0"DJ0J0J(0r(r20+z)dr=2kdzJ0.•727(r3+rz)dr0四、【解】方法一I(Q)=•421‘64256ttndz=4k•—=—-—o33(1+^3)da:+(2jc+j/)dj/=(1+a3sin3x)dr+(2工+asinjc)•acosxda:J0=4kL7t+a3sin'工dr+2a0xd(sinx)+a20sinj?d(sinx)0=7T+2q'•—+2aIj;sinxsin工dr)=兀+—<0/323討j,令厂(a)=4a2—4=0得a=1.因为r(l)=8>0,所以a=l时(1+L3?)dr+(2h+y)dy最小9故所求曲线为y=sinx.方法二而((1+j/3)djr+(2工+=l+ao+OA(1+j/3)dJr+(2z+jy)dy.)_(1+3/3)d+(2zy)dy=—(2—3y2)dxdy=(3j^2—2)dxdyl+aoJJJJDDrnrasinxfndjc0O3/2—2)dj/=(a'sin3x—2asin工)dz00ya3-4a,—(l+^3)dj?+(2jc+j^)d^=OAdz=7T,0令厂(Q)=4/—4=0,得Q=1,因为J"(l)=8>0,所以Q=1时Jl(1+夕3)dz+(2工+y)dy最小,故所求曲线为y=sinX.五、【解】显然/(^)满足狄利克雷充分条件,a”bn=21(2+j7)dj7=2XJ0(2+t)=5,=2〕(2+工)cosrnzjcAjc=2(2Jcosmtxdx+xcosmixAx02.—jcsinnnxH7T2—■―cosrmxn7r7?27T2sinmtjcdx=coskjcH--cos321xd(sinmtx)o0,xcosnitxdx04sin04~~~2n7Tmzxdxn=1,3拓9…,(―00V工<+°°),取「0,得占+£+•——》7T2„=0(2”+1)2—T'=2=0,5故2+||=—2[(—1)”-1]n=2,496,…,13兀工+・••)00-1令S=St,则”=1n7T2,1右+*+*+•••)+1+*+*+…丿=〒+〒s,228'4200i解得s=即工46“=in27CT六、【证明】由积分中值定理可知,存在e使得3J2/(x)d^=3•_/(工0)...