试题册—数二.pdf本文件免费下载 【共76页】

试题册—数二.pdf
试题册—数二.pdf
试题册—数二.pdf
2021年全国硕士研究生招生考试数学二试题姓名分数B.低阶无穷小.D,同阶但非等价无穷小.z�0,在z=0处x=02.函数,(工)=B.连续且取得极大值.D.可导且导数不为零.一、选择题:1〜10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是最符回合题目要求的.1.当工―0时(甘‘-l)dz是工’的A.等价无穷小.C.高阶无穷小.ex—11x1,A.连续且取得极小值.C,可导且导数等于零.3.有一圆柱体底面半径与高随时间变化的速率分别为2cm/s,-3cm/s.当底面半径为10cm,高为5cm时,圆柱体的体积与表面积随时间变化的速率分别为A.125kcm3/s,—40kcm2/s.C,—IOOttcm3/s,40ttcm2/s.B.125kcm3/s»40jrcm2/s.D.—IOOttcm&#039;/s,—40tccm2/s.4,设函数fix&#039;)=ax~b\nxCa>0)有2个零点,则#的取值范围是A.(0,e).B.(e,+°°).C.(o,+).D.(土,+8).5.设函数fCx)=secz在x=0处的2次泰勒多项式为1+az+&c2,则A.a=B.q=1,b=---.C.a=0,b=--.D.q=0,6=-y.6.设函数r(z,;y)可微,且/(x+l,ex)=工(工+I)2,f(3c,S)=2j:2lnz,则d/(1,1)=A.dr—dyB.&+dyC.dy.D,—dy7.设函数/Xz)在区间[0,口上连续,则&S)&=,人匝景(穿)+B如街(号)去c•副机(银)+d.四景(寿)号.8.二次型,38/3)=(勾+工2),+(互+五)2—(五一e)2的正惯性指数与负惯性指数依次为A.1,1.B.2,0.C.2,1.D.1,2.2021年全国硕士研究生招生考试数学二试题9.设3阶矩阵A=(oi,a2,a3)>B=($,&*).若向量组ai,az,a3可以由向量组白,pz,&线性表出,则A.ATx=0的解均为BTx=0的解.B.Ax=0的解均为Br=0的解.C.Bx=0的解均为Ax=0的解.D.BTx=0的解均为ATx=0的解.o-r-11.若下三角可逆矩阵P和上三角可逆矩阵Q,使得R1Q为对角矩阵,则P,Q可10.已知矩阵A=2>12—5j分别取&#039;10O&#039;10O&#039;&#039;10O&#039;‘101A.2-10010.B.010013-321>、001<001.、00L10O&#039;‘1or10o&#039;[12-3&#039;C.2-10013・D.0100-12-32K、oo1,、131,001,二、填空题小题,每小题5分,共30分.11.|||3-xdLr=12.设函数由参数方程《二二"危确定,则制『=——13.设函数z=z(.x,y)由方程(z+l)z+ylnz—arctan(2工y)=1确定,则祭L》=•三、解答题:17〜22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)14.已知函数f(t)=j】广sin目丁,则/(y)=_______・15.微分方程y”—y=O的通解为/=xx12jc1x2—116.多项式=21x12—11z中工3项的系数为_______求极限lim[l+j°e&#039;&].z[eJ—1sin二,18.(本题满分12分)已知函数/(z)=专项,求曲线>=/(x)的凹凸区间及渐近线.1十Z19.(本题满分12分)设函数/Xz)满足j勺退丑=*工2—力+(?,£,为曲线/=八z)(4<x<9).记L的长度为s,L绕工轴旋转所成旋转曲面的面积为A,求s和A.20.(本题满分12分)设V=V(z)(z>0)是微分方程xy&#039;—6j/=—6满足条件y(V3)=10的解.2021年全国硕士研究生招生考试数学二试题考研电子版网站:www.pdf2book.com(1)求y(z);(2)设P为曲线、=>(x)上一点,记曲线/=火了)在点P处的法线在丁轴上的截距为Ip.当Ip最小时,求点P的坐标.21.(本题满分12分)设平面区域D由曲线(x2+/)2=x2一>0,"20)与Z轴围成,计算二重积硼[y&dyD22.(本题满分12分)210&#039;设矩阵A=120仅有两个不同的特征值.若A相似于对角矩阵,求的值,并求可逆矩阵P,使为.1ab,对角矩阵.2021年全国硕士研究生招生考试数学二试题考研电子版网站:www.pdf2book.com答案速查一、选择题I.C.2.D.3.C.4.B.5.D.6.C.7.A.8.A.9.D.10.C.二、填空题II.o.12.g.13.1.14.-5-cos—.In3,32kJ5,C*(Qsin^x+Cscos^x),其中G,G,G为任意常数.16.-5.三、解答题17.18.y=/(x)的凸区间为(-1,0),凹区间为(一8,-1),(0,+8).x――1为曲线y=/(x)的铅直渐近线=工一1为曲线y=f(x)当z一+8时的斜渐近线=—x+1为曲线>=/(x)当z—8时的斜渐近线.19.5=y,A=^K.20.(l)j»(j:)=-x-x6+l(x>0).(2)P(1-),21-L48,-10r40-r22,①a=1,6=1.P=10i.②a=—1,6=3.P=10i.o1L.01i,2021年全国硕士研究生招生考试数学二试题考研电子版网站:www.pdf2book.com2020年全国硕士研究生招生考试数学二试题姓名分数一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.当l0+时,下列无穷小中最高阶的是A.「(』...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群