小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com6.2.1排列及排列数(精讲)思维导图小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考点一排列的概念【例1】(2021年广东汕头)(1)下列问题是排列问题的是()A.从10名同学中选取2名去参加知识竞赛,共有多少种不同的选取方法?B.10个人互相通信一次,共写了多少封信?C.平面上有5个点,任意三点不共线,这5个点最多可确定多少条直线?D.从1,2,3,4四个数字中,任选两个相加,其结果共有多少种?(2)从3个不同的数字中取出2个:①相加;②相减;③相乘;④相除;⑤一个为被开方数,一个为根指数.则上述问题为排列问题的个数为()A.2B.3C.4D.5【答案】(1)B(2)B【解析】(1)排列问题是与顺序有关的问题,四个选项中只有B中的问题是与顺序相关的,其他问题都与顺序无关,所以选B.(2)排列与顺序有关,故②④⑤是排列.【一隅三反】1.(2020年广东河源)判断下列问题是否为排列问题.(1)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排三位客人,又有多少种方法?(2)从集合M={1,2,…,9}中,任取两个元素作为a,b,可以得到多少个焦点在x轴上的椭圆方程+=1?可以得到多少个焦点在x轴上的双曲线方程-=1?(3)从1,3,5,7,9中任取3个数字,有多少种方法?若这3个数字组成没有重复的三位数,又有多少种方法?常见考法小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】见解析【解析】(1)第一问不是排列问题,第二问是排列问题.“入座”问题同“排队”问题与顺序有关,故选3个座位安排三位客人是排列问题.(2)第一问不是排列问题,第二问是排列问题.若方程+=1表示焦点在x轴上的椭圆,则必有a>b,a,b的大小关系一定;在双曲线-=1中,不管a>b还是a<b,方程-=1均表示焦点在x轴上的双曲线,且是不同的双曲线,故是排列问题.(3)第一问不是排列问题,第二问是排列问题.从5个数中取3个数,与顺序无关;若这3个数组成不同的三位数,则与顺序有关.2.(2021年河北)下列问题是排列问题的是()A.从8名同学中选取2名去参加知识竞赛,共有多少种不同的选取方法?B.10个人互相通信一次,共写了多少封信?C.平面上有5个点,任意三点不共线,这5个点最多可确定多少条直线?D.从1,2,3,4四个数字中,任选两个相乘,其结果共有多少种?【答案】B【解析】排列问题是与顺序有关的问题,四个选项中只有B中的问题是与顺序有关的,其他问题都与顺序无关.故选B.考点二排列数【例2】(1)(2020·江苏省前黄高级中学)若,则()A.5B.6C.7D.8(2)(2020·永昌县第四中学)若,则m的值为()A.5B.3C.6D.7(3)(2021·山西省长治市第二中学校高)不等式的解集为()A.B.C.D.【答案】(1)A(2)A(2)C【解析】(1),化解得解得:m=(舍)或m=5故选:A(2)根据题意,若,则有m(m﹣1)(m﹣2)(m﹣3)(m﹣4)=2×m(m﹣1)(m﹣2),即(m﹣3)(m﹣4)=2,解可得:m=5故答案为A小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)由,得:,整理得,解得:,由题可知,且,则或,即原不等式的解集为:.故选:C.【一隅三反】1.(2020·全国高二单元测试)对于满足的正整数n,()A.B.C.D.【答案】C【解析】根据排列数定义,要确定元素总数和选取个数,元素总数为,选取个数为,.故选:C.2.(2020·宁夏育才中学)已知,则()A.5B.7C.10D.14【答案】B【解析】,可得,即,解得.故选:.3.(2020·山东莱州一中)给出下列四个关系式:①②③④其中正确的个数为()A.1个B.2个C.3个D.4个【方法总结】1.要注意中隐含了3个条件:①,;②;③的运算结果为正整数2.形,...