小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com拓展四导数与零点、不等式的综合运用【题组一零点】1.(2020·历下·山东师范大学附中)已知函数,其中e是自然对数的底数,.(1)求函数的单调区间;(2)设,讨论函数零点的个数,并说明理由.【答案】(1)增区间是,减区间是.(2)见解析【解析】(1)因为,所以.由得;由得.所以由的增区间是,减区间是.(2)因为.由,得或.设,又即不是的零点,故只需再讨论函数零点的个数.因为,所以当时,单调递减;当时,单调递增.所以当时,取得最小值.①当即时,无零点;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com②当即时,有唯一零点;③当,即时,因为,所以在上有且只有一个零点.令则.设,所以在上单调递增,所以,都有.所以.所以在上有且只有一个零点.所以当时,有两个零点综上所述,当时,有一个零点;当时,有两个零点;当时,有三个零点.2.(2020·湖北)已知函数.(1)当时,求曲线在点处的切线方程;(2)当时,判断方程的实根个数,并说明理由.【答案】(1);(2)方程恰有三个不同的实根,1,,理由见解析.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】(1)当时,,则,因为,所以,则所求切线方程为,即.(2)当时,,方程,即.令,定义域为,则.令,则,令,得.当时,,所以在上单调递减;当时,,所以在上单调递增.所以.又,,,.所以在上存在唯一零点,记为.在上存在唯一零点,记为.则,.当时,,所以在上单调递增;当时,,所以在上单调递减;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,,所以在上单调递增.又,,所以在上存在唯一零点1.因为,,所以存在唯一的,使得.存在唯一的,使得,且,.综上,方程恰有三个不同的实根,1,.3.(2020·河南)已知函数.(1)讨论函数的单调性;(2)当时,判断函数零点的个数,并说明理由.【答案】(1)答案见解析;(2)只有一个零点,理由见解析.【解析】(1)的定义域为,,当时,,则在上是增函数;当时,,所以;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com或;,所以在上是减函数,在和上是增函数.(2)当时,,其定义域为,则.设(),则,从而在上是增函数,又,,所以存在,使得,即,.列表如下:100增函数极大值减函数极小值增函数由表格,可得的极小值为;的极大值为因为是关于的减函数,且,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以在内没有零点.又,,所以在内有一个零点.综上,只有一个零点.4.(2020·河北)已知函数,.(1)求在区间上的极值点;(2)证明:恰有3个零点.【答案】(1)极大值点,极小值点;(2)证明见解析.【解析】(1)(),令,得,或.当时,,单调递增;当时,,单调递减;当时,,单调递增.故是的极大值点,是的极小值点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com综上所述,在区间上的极大值点为,极小值点为.(2)(),因为,所以是的一个零点.,所以为偶函数.即要确定在上的零点个数,只需确定时,的零点个数即可.当时,.令,即,或().时,,单调递减,又,所以;时,,单调递增,且,所以在区间内有唯一零点.当时,由于,..而在区间内单调递增,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.d...