小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.2.2导数的四则运算法则[A级基础巩固]1.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于()A.-1B.-2C.2D.0解析:选B f′(x)=4ax3+2bx为奇函数,∴f′(-1)=-f′(1)=-2.2.函数y=的导数是()A.B.C.D.解析:选Ay′=′===.3.曲线f(x)=xlnx在点x=1处的切线方程为()A.y=2x+2B.y=2x-2C.y=x-1D.y=x+1解析:选C f′(x)=lnx+1,∴f′(1)=1,又 f(1)=0,∴在点x=1处曲线f(x)的切线方程为y=x-1.4.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解析:选Dy′=a-,由题意得y′|x=0=2,即a-1=2,所以a=3.5.已知直线y=3x+1与曲线y=ax3+3相切,则a的值为()A.1B.±1C.-1D.-2解析:选A设切点为(x0,y0),则y0=3x0+1,且y0=ax+3,所以3x0+1=ax+3①.对y=ax3+3求导得y′=3ax2,则3ax=3,ax=1②,由①②可得x0=1,所以a=1.6.曲线y=x3-x+3在点(1,3)处的切线方程为________.解析: y′=3x2-1,∴y′|x=1=3×12-1=2.∴切线方程为y-3=2(x-1),即2x-y+1=0.答案:2x-y+1=07.已知曲线y1=2-与y2=x3-x2+2x在x=x0处切线的斜率的乘积为3,则x0=________.解析:由题知y′1=,y′2=3x2-2x+2,所以两曲线在x=x0处切线的斜率分别为,3x-2x0+2,所以=3,所以x0=1.答案:18.已知函数f(x)=f′cosx+sinx,则f的值为________.解析: f′(x)=-f′sinx+cosx,∴f′=-f′×+,得f′=-1.∴f(x)=(-1)cosx+sinx.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴f=1.答案:19.求下列函数的导数:(1)y=-lnx;(2)y=(x2+1)(x-1);(3)y=;(4)y=.解:(1)y′=(-lnx)′=()′-(lnx)′=-.(2)y′=[(x2+1)(x-1)]′=(x3-x2+x-1)′=(x3)′-(x2)′+(x)′-(1)′=3x2-2x+1.(3)y′==.(4)y′==.10.偶函数f(x)=ax4+bx3+cx2+dx+e的图象过点P(0,1),且在x=1处的切线方程为y=x-2,求f(x)的解析式.解: f(x)的图象过点P(0,1),∴e=1.又 f(x)为偶函数,∴f(-x)=f(x).故ax4+bx3+cx2+dx+e=ax4-bx3+cx2-dx+e.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴b=0,d=0.∴f(x)=ax4+cx2+1. 函数f(x)在x=1处的切线方程为y=x-2,∴切点为(1,-1).∴a+c+1=-1. f′(1)=4a+2c,∴4a+2c=1.∴a=,c=-.∴函数f(x)的解析式为f(x)=x4-x2+1.[B级综合运用]11.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+lnx,则f′(e)=()A.e-1B.-1C.-e-1D.-e解析:选C f(x)=2xf′(e)+lnx,∴f′(x)=2f′(e)+,∴f′(e)=2f′(e)+,解得f′(e)=-,故选C.12.若f(x)=x2-2x-4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(-1,0)∪(2,+∞)C.(2,+∞)D.(-1,0)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解析:选C f(x)=x2-2x-4lnx,∴f′(x)=2x-2->0,整理得>0,解得-1<x<0或x>2,又 f(x)的定义域为(0,+∞),∴x>2.13.曲线y=在点(1,1)处的切线为l,则l上的点到圆x2+y2+4x+3=0上的点的最近距离是________.解析:y′=-,则y′=-1,∴切线方程为y-1=-(x-1),即x+y-2=0,圆心(-2,0)到直线的距离d=2,圆的半径r=1,∴所求最近距离为2-1.答案:2-114.已知曲线f(x)=x3+ax+b在点P(2,-6)处的切线方程是13x-y-32=0.(1)求a,b...