小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第一章空间向量与立体几何--复习小结一、选择题1.(2020·江西省高二期中)在四面体中,点在上,且,为中点,则等于()A.B.C.D.【答案】B【解析】在四面体中,点在上,且,为中点,所以,即.故选:B.2.(2020·南昌市八一中学高二期末(理))设,向量且,则()A.B.C.3D.4【答案】D小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】,,,故选C.3.(2020·延安市第一中学高二月考(理))在棱长为2的正方体中,,分别为棱、的中点,为棱上的一点,且,设点为的中点,则点到平面的距离为()A.B.C.D.【答案】D【解析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,则M(2,λ,2),D1(0,0,2),E(2,0,1),F(2,2,1),=(﹣2,0,1),=(0,2,0),=(0,λ,1),设平面D1EF的法向量=(x,y,z),则,取x=1,得=(1,0,2),∴点M到平面D1EF的距离为:d=,N为EM中点,所以N到该面的距离为,选D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.(2020·浙江省杭州第二中学高二)空间线段,,且,设与所成的角为,与面所成的角为,二面角的平面角为,则()A.B.C.D.【答案】A【解析】因为空间线段,,所以可将其放在矩形中进行研究,如图,绘出一个矩形,并以点为原点构建空间直角坐标系:因为,所以可设,,,则,,,,,,,故与所成的角的余弦值,因为根据矩形的性质易知平面平面,平面,所以二面角的平面角为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,,所以即与面所成的角,故,因为,所以,故选:A.5.(多选题)(2019·山东省青岛二中高二期末)在四面体中,以上说法正确的有()A.若,则可知B.若Q为的重心,则C.若,,则D.若四面体各棱长都为2,M,N分别为,的中点,则【答案】ABC【解析】对于,,,,,即,故正确;对于,若Q为的重心,则,,即,故正确;对于,若,,则,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,故正确;对于,,,,故错误.故选:6.(多选题)(2020·江苏省高二期中)如图,在菱形中,,,将沿对角线翻折到位置,连结,则在翻折过程中,下列说法正确的是()A.与平面所成的最大角为B.存在某个位置,使得C.当二面角的大小为时,D.存在某个位置,使得到平面的距离为【答案】BC【解析】如图所示:小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对A,取BD的中点O,连结OP,OC,则当时,与平面所成的最大角为,故A错误;对B,当时,取CD的中点N,可得所以平面PBN,所以,故B正确;对C,当二面角的大小为时,所以,所以,所以,故C正确;对D,因为,所以如果到平面的距离为,则平面PCD,则,所以,显然不可能,故D错误;故选:BC.二、填空题7.(2019·浙江省高二月考)在长方体中,,,点在棱上移动,则直线与所成角的大小是__________,若,则__________.【答案】;1【解析】长方体ABCDA﹣1B1C1D1中以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com标系,又,,点在棱上移动则D(0,0,0),D1(0,0,1),A(1,0,0),A1(1,0,1),C(0,2,0),设E(1,m,0),0≤m≤2,则=(1,m,﹣1),=(﹣1,0,﹣1...