小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.4.2空间向量应用(二)思维导图小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考点一空间向量求线线角【例1】(2020·全国高三一模(文))如图,四棱锥中,底面是矩形,,,,,是等腰三角形,点是棱的中点,则异面直线与所成角的余弦值是()常见考法小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【一隅三反】1.(2020·河南高二)已知在正方体中,P为线段上的动点,则直线与直线所成角余弦值的范围是()向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.2.三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1⊥平面ABC,AA1=AB,N,M分别是A1B1,A1C1的中点,则AM与BN所成角的余弦值为()A.B.C.D.3.已知四棱锥SABCD的底面是正方形且侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为()A.B.C.D.考点二空间向量求线面角【例2】(2020·全国高二)如图所示,是四棱锥的高,四边形为正方形,点是线段的中点,.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求证:;(2)若点是线段上靠近的四等分点,求直线与平面所成角的正弦值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一隅三反】1.(2020·浙江高三开学考试)如图,四棱锥中,,,,,,.(1)求证:;(2)求直线与平面所成角的正弦值.若直线l与平面α的夹角为θ,直线l的方向向量l与平面α的法向量n的夹角为β,则θ=-β或θ=β-,故有sinθ=|cosβ|=.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.(2020·天津河西.高三二模)在正四棱柱中,,为的中点.(1)求证:平面;(2)求证:平面;(3)若为上的动点,使直线与平面所成角的正弦值是,求的长.3.(2020·江苏)如图,在三棱锥P-ABC中,AC⊥BC,且,AC=BC=2,D,E分别为AB,PB中点,PD⊥平面ABC,PD=3.(1)求直线CE与直线PA夹角的余弦值;(2)求直线PC与平面DEC夹角的正弦值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考点三空间向量求二面角【例3】(2020·河南高三其他(理))如图,在三棱锥中,.(1)证明:平面;(2)求二面角的余弦值.【一隅三反】1.(2020·全国)如图,圆的直径,为圆周上不与点、重合的点,垂直于圆所在平面,利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,.(1)求证:平面;(2)求二面角的余弦值.2.(2020·全国)如图,已知四棱锥中,是平行四...