小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第二章:直线与圆的方程综合检测卷(试卷满分150分,考试用时120分钟)一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的.1.(23-24高二下·山西太原·月考)直线的倾斜角是()A.B.C.D.【答案】D【解析】由直线,可得直线的斜率为,设直线的倾斜角为,可得,因为,所以.故选:D.2.(23-24高二上·重庆黔江·月考)已知直线的斜率为,在轴上的截距为,则直线的方程为()A.B.C.D.【答案】B【解析】直线在轴上的截距为,点在直线上,又直线的斜率为,根据点斜式方程得即.故选:B.3.(23-24高二上·贵州铜仁·月考)已知直线,直线,则直线的倾斜角为()A.B.C.D.【答案】D【解析】因为直线的斜率,且,可知直线的斜率小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以的倾斜角为.故选:D.4.(16-17高一·全国·课后作业)已知圆的方程是,则点()A.在圆心B.在圆上C.在圆内D.在圆外【答案】C【解析】因为,所以点P在圆内.故选:C.5.(23-24高二上·广东·月考)已知直线经过两条直线:,:的交点,且的一个方向向量为,则直线的方程为()A.B.C.D.【答案】B【解析】联立,解得,即直线:,:的交点为,又直线的一个方向向量,所以直线的斜率为,故直线的方程为,即,故选:B.6.(23-24高二上·辽宁·月考)若圆经过点,,且圆心在直线上,则圆的方程为()A.B.C.D.【答案】B【解析】设该圆方程为,则圆心为,有,将点,代入,有,化简得,两式相减得,即有,则,,故该圆方程为.故选:B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com7.(23-24高二上·河北沧州·月考)已知圆与圆,则圆与圆的位置关系为()A.相交B.外切C.外离D.内含【答案】B【解析】由题意确定两圆的圆心坐标和半径,根据圆与圆的位置关系即可判断.圆,圆心,半径,圆可化为,圆心,半径,则,∴圆与圆的位置关系为外切,故选:B.8.(23-24高二下·重庆·月考)设为直线上的动点,若圆上存在两点A,B,使,则的取值范围是()A.B.C.D.【答案】C【解析】圆的圆心到直线的距离,即直线与圆相交,当点在圆及内部时,该圆上存在两点A,B,使,当点在圆外时,过点作圆的切线,为切点,显然是最大的,则只需即可,此时,,而也符合要求,因此,即,又,则,解得,所以的取值范围是.故选:C小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(23-24高二上·河北石家庄·月考)下列命题中错误的是()A.若直线的倾斜角为钝角,则其斜率一定为负数B.任何直线都存在斜率和倾斜角C.直线的一般式方程为D.任何一条直线至少要经过两个象限【答案】BCD【解析】对于A,直线的倾斜角,则其斜率,A正确;对于B,倾斜角为的直线不存在斜率,B错误;对于C,直线的一般式方程为,,C错误;对于D,当直线与轴或轴重合时,该直线不经过任何象限,D错误.故选:BCD10.(22-23高二上·福建宁德·月考)已知直线,则()A.若,则的一个方向向量为B.若,则或C.若,则D.若不经过第二象限,则【答案】ACD【解析】对A,当时,,斜率为,则其一个方向向量为,故A正确;对B,若,当时,显然不合题意,则,则直线的斜率,直线的斜率,则有,即,解得或,当时,此时直线,显然两条直线重合,故B错误;对C,若,当时,显然不合题意,则,则,即,解得,故C正确;对D,若不经过第二象限,,化简得,则,解得,故D正确;故选:ACD.11.(23-24高二上·江西·月考)已知圆,直线,下列说法正确的是()A.无论取何值,直线与圆相交小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comB.直线被圆截得的最短弦长为C.若,则圆关于直线对称的圆的方程为D.直线的方程能表示过点的所有直线的方程【答案】AC【解析...