小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com班级姓名学号分数第八章成对数据的统计分析(A卷·知识通关练)核心知识1:线性回归方程1.(2023·江苏·泗阳县实验高级中学高二阶段练习)若某地的财政收入x与支出y满足线性回归方程(单位:亿元),其中,,.若今年该地区财政收入为10亿元,则年支出预计不会超过________亿元.2.(2023·广东·五华县五华中学高二期中)已知下列命题:①在线性回归模型中,相关指数越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数r就越接近于1;③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;④两个模型中残差平方和越小的模型拟合的效果越好.⑤回归直线恒过样本点的中心,且至少过一个样本点;⑥若的观测值满足≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.其中正确命题的序号是__________.3.(2023·全国·高二课时练习)对四对变量与进行线性相关检验,已知是观测值组数,是相关系数,若已知①,;②,;③,;④,;则变量和具有线性相关关系的是________.4.(2023·全国·高二课时练习)某同学10次考试的物理成绩y与数学成绩x如下表所示.数学成绩x76827287937889668176物理成绩y808775a1007993688577小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com已知y与x线性相关,且y关于x的回归直线方程为,则下列说法正确的是________.(参考数据:)①;②y与x正相关;③y与x的相关系数为负数;④若数学成绩每提高5分,则物理成绩估计能提高5.5分.5.(2023·全国·高二课时练习)将两个变量x、y的n对样本数据,,,…,在平面直角坐标系中表示为散点图,根据x、y满足一元线性回归模型及最小二乘法,求得其经验回归方程为.设为回归直线上的点,则下列说法正确的是________.①越小,说明模型的拟合效果越好;②利用最小二乘法求出的线性回归直线一定经过散点图中的某些点;③相关系数r的绝对值越接近于1,说明成对样本数据的线性相关程度越强;④通过经验回归方程进行预报时,解释变量的取值不能距离样本数据的范围太远,求得的预报值不是响应变量的精确值.6.(2023·陕西·宝鸡市金台区教育体育局教研室高二期末(理))如图是某采矿厂的污水排放量单位:吨与矿产品年产量单位:吨的折线图:(1)依据折线图计算相关系数精确到,并据此判断是否可用线性回归模型拟合y与x的关系?若,则线性相关程度很高,可用线性回归模型拟合小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)若可用线性回归模型拟合与的关系,请建立关于的线性回归方程,并预测年产量为10吨时的污水排放量.相关公式:,参考数据:.回归方程中,7.(2023·安徽·高二期末)为了解温度对物质参与的某种化学反应的影响,研究小组在不同温度条件下做了四次实验,实验中测得的温度x(单位:°C)与的转化率y%(转化率=)的数据如下表所示:x45556575y23386574(1)求y与x的相关系数(结果精确到0.01);(2)该研究小组随后又进行了一次该实验,其中的起始量为50g,反应结束时还剩余2.5g,若已知y关于x的线性回归方程为,估计这次实验是在多少摄氏度的温度条件下进行的..参考数据:,,,.参考公式:相关系数小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com8.(2023·江西吉安·高二期末(理))防疫抗疫,人人有责,随着奥密克戎的全球肆虐,防疫形势越来越严峻,防疫物资需求量急增.下表是某口罩厂今年的月份与订单(单位:万元)的几组对应数据:月份12345订单20244...