小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题4.4数学归纳法*知识储备知识点数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n=n0(n0N*)∈时命题成立;(2)(归纳递推)以“当n=k(kN*∈,k≥n0)时命题成立”为条件,推出“当n=k+1时命题也成立”.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立,这种证明方法称为数学归纳法.【名师点津】1.数学归纳法的两个步骤缺一不可,前者是基础,后者是递推的依据.2.运用数学归纳法时易犯的错误:(1)对项数估算错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化易弄错;(2)不利用归纳假设:归纳假设是起桥梁作用的,桥梁断了就通不过去了;(3)步骤不严谨、不规范,在利用假设后,不作任何推导或计算而直接写出所要结论.能力检测注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单选题1.用数学归纳法证明:首项是a1,公差是d的等差数列的前n项和公式是Sn=na1+d时,假设当n=k时,公式成立,则Sk=()A.a1+(k-1)dB.C.ka1+dD.(k+1)a1+d【答案】C【解析】假设当n=k时,公式成立,只需把公式中的n换成k即可,即Sk=ka1+d.2.已知f(n)=,则()A.f(n)中共有n项,当n=2时,f(2)=+小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comB.f(n)中共有n+1项,当n=2时,f(2)=++C.f(n)中共有n2-n项,当n=2时,f(2)=+D.f(n)中共有n2-n+1项,当n=2时,f(2)=++【解析】选D由f(n)可知,f(n)中共有n2-n+1项,且n=2时,f(2)=++3.用数学归纳法证明n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2(n∈N*)时,若记f(n)=n+(n+1)+(n+2)+…+(3n-2),则f(k+1)-f(k)等于()A.3k-1B.3k+1C.8kD.9k【答案】C【解析】因为f(k)=k+(k+1)+(k+2)+…+(3k-2),f(k+1)=(k+1)+(k+2)+…+(3k-2)+(3k-1)+3k+(3k+1),则f(k+1)-f(k)=3k-1+3k+3k+1-k=8k.4.证明等式12+22+32+…+n2=(n∈N*)时,某学生的证明过程如下:①当n=1时,12=,等式成立;②假设n=k(k∈N*)时,等式成立,即12+22+32+…+k2=,则当n=k+1时,12+22+32+…+k2+(k+1)2=+(k+1)2===,所以当n=k+1时,等式也成立,故原式成立.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com那么上述证明()A.过程全都正确B.当n=1时验证不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确【答案】A【解析】通过对上述证明的分析验证知全都正确,故选A.5.已知1+2×3+3×32+4×33+…+n×3n-1=3n(na-b)+c对一切n∈N*都成立,那么a,b,c的值为()A.a=,b=c=B.a=b=c=C.a=0,b=c=D.不存在这样的a,b,c【答案】A【解析】令n=1,2,3,得即解得a=,b=,c=.6.用数学归纳法证明3n≥n3(n≥3,nN*),∈第一步验证()A.n=1B.n=2C.n=3D.n=4【答案】C【解析】由题知,n的最小值为3,所以第一步验证n=3时不等式是否成立.7.利用数学归纳法证明不等式1+12+13+…+12n−1<n(n≥2,nN*)∈的过程中,由n=k变到n=k+1时,左边小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com增加了()A.1项B.k项C.2k-1项D.2k项【答案】D【解析】当n=k时,不等式左边的最后一项为12k−1,而当n=k+1时,最后一项为12k+1−1=12k−1+2k,并且不等式左边和式每一项分母的变化规律是每一项比前一项加1,故增加了2k项.8.观察下列式子:,,,…,则可归纳出小于()A.B.C.D.【答案】C【解析】由已知式子可知所猜测分式的分母为,分子第个正奇数,即,.故选...