1995年数学(一)真题解析一、填空题(1)【答案】e6.2]6工【解】lim(l+3x)^=limCC1+3J;)57]x-*0x-»0(2)【答案】一[cost'd/—2j:2cosj;4.J0【解】px2COS厂&)=—Jcost2At—2x2cosjc4.(3)【答案】4.【解】[(a+b)X(b+c)]<>(c+a)=(aXb+aXc+bXc)•(c+a)=(aXb)・c+(bXc)•a=2(aX&)•c=4.(4)【答案】罷.【解】由limI—I=lim"十】•卄】];:卄1—~~得收敛半径R=43・”f°°|a„I”一8nZ十(一3)o/300(5)【答案】020'o01【解】由A1BA=6A+BA得B4=6A2+ABA,然后右乘人一】得B=6A+AB,解得〃=6(E-A)_1A=6[AT(jE—A)]—】=6(A_1-EK1,0$0°\由AT—E=30,得(AT—E)T'o06,二、选择题(1)【答案】(C).丄I001300020001丄I,故B=0006【解】直线L的方向向量为£={1,3,2}X{2,—1,—10}={—28,14,—7}=—7{4,—2,1},因为平面7T的法向量平行于L的方向向量,所以L丄7T,选(C)・(2)【答案】(E).【解】由拉格朗日中值定理得/(1)-/(0)=/(c),其中0VcV1,由f"3>0得fO单调递增,再由0VcV1得/(I)>/(c)>/(0),应选(E).(3)【答案】(A).【解】FL(0)XXF(h)—F(0)/(x)(1—sinx)—f(0)lim--------------------=lim------------------------------------x->0_Xx—O'F;(0)=lim■Tf0十了(h)—于(0)_fQ).sinJC—x=limx->0~~F(h)—F(0)/(x)(1+sinx)—/(0)--------------------=lim--------------------------------------工—o+JCX+/*(£)・=/(0)+/(0),=lim「心)一/(O)丄卡L工FQ)在z=0处可导的充分必要条件是(0)—/(0)=y'(0)+f(0),即/(0)=0,即/(0)=0是F(z)在工=0处可导的充分必要条件,应选(A).(4)【答案】(C).【解】由单调递减且limln(l+*)=0得”"”收敛,/1\1°°I8由山=ln21+—~—且工丄发散得工山发散,应选(C).\Vt?'n”=jn”=](5)【答案】(C).【解】将A的第1行加到第3行,再将第1行与第2行对调得B,即/°1°\Z10°\B=0°10A=PxP2A,应选(C)'o00J三、(1)【解】U=>z)两边对X求导得axdyd7+几伴。(工2,e,,z)=0两边对x求导得2工认+?;•卍•警+甲;•£=0,又y=sin无,竺=ax故^=f\+/;.cosx-/;伽帀dz(p\9;sinxcosx,解得丁=—lx—------ecosx,dz卩3卩301丄^2sinj\ex—H----ecosxj・卩3卩37(2)【解】方法一令FQ)=/(nd^F(l)=A,则0■ida:I/(j;)/(j/)dj/oJ工=Jo/(z)clrJ_/(y)d_y=[/'(无)[F(1)—F(h)]dzJ0AIf(x)dj?—Jo.f(j:)F(j:)djc=A201F(x)dF(^:)0iA2-*严(乂)o十.方法二•1flflI/Xz)f(y)dy=LffCy)dy,J0又][f(y)dy=[dy[/"(z"(y)dz=JoJXJoJo0(lr[f(y)f(x)dy0000=)dz[y(y)dy,于是2〔djJ/(z)y(y)dy=[/"(乂)dz[/'(y)dy+[/(z)d_r[/(y)dy=Jo/(x)djr|f(y)dy-0002=f(x)dz]0故]。山]f(T)f(.y)dy=-yA2.0■1四、(1)【解】1:z=Vx2+y2,其中x2+y2W2无,dzdxJCdzVx2+y2,dy1+厶+注»"』/+/W2工zdS=JJJ工?+)2•=施]\dfr=善血Ji曲加&=yV2[TCOS30d^=¥施.(2)【解】将/(工)进行偶延拓再进行周期延拓,则VJC2+2•\[2dzdy则Go2/(j:)dj?=0'2(z—l)dj?=0oa727TJ7f(x)cos—-—Ajc=o2Yi7rjr(z-l)cos宁dzo2=f(z-1)d(sinn7rJo\nremtjc~2~2.八.nnx=——1;sin—-—rm2yVx2+y2o92.nitxsin―-—djeo2b„4mix苕cos〒24=~T~7[(—1)"_叮=0n7T1,2,3,…,则0,8"I~2n7:n=2,4,6,…,n=1,3,5,…90x—18/1tzjc.13兀工.15兀攵.\*亠/一门-----Jcos—+尹cos—^―+尹a~Y~-------),其中0W工W2.527t五、【解】设M(hq)为L上的任意一点,L上M处的切线方程为Y—y=j/(X—工儿令X=0得Y=y—xyr,即A(0,夕一xyf)9|MA|=jc丿]+j/?IOA\=y—xyr,由\=\oai,有化简后得y—xyf|=a/(j:—0)2+(j/—+xyfY,—3/+工2=0.h人2/口dzz再令z=y,得-------=—X,QJCX解得z即e险dr+Cx2+Cjc・X(—H+C)9由于所求曲线在第一象限内,知y>0,故y=\/Cjc—x2将已知条件y(*)=*代入上式,得C=3,于是曲线方程为y=J玉工_无2(0VzV3).六、【解】由[戶皿+QCz,y)旳与路径无关得薯=2乂,则Q(")=工+3,(z,l)(0,0)2jcy(\jc+Q(j;=Odx+[[_t2+<p(y)2dy=t2+(p(y)dy,oJoJo00(l,i)flp2zy<lr+QQ)dy=|Odx+口+°(y)]dy(0,0)JoJo=t+|0(y)dy,J000f>(y)dy=t2+1<p(y)dy得a>(t)=2t—1,Jo故Q(z,y)—jc22y—1.七、【证明】(1)(反证法)设存在cE(a,b),使得g(c)=0,由罗尔定理,存在5e(a,c),$2e(c,6),使得g'(5)=g'(W2)=o,再由罗...