2025年新高考数学复习资料第08讲 函数的奇偶性、对称性和周期性(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx本文件免费下载 【共16页】

2025年新高考数学复习资料第08讲 函数的奇偶性、对称性和周期性(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
2025年新高考数学复习资料第08讲 函数的奇偶性、对称性和周期性(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
2025年新高考数学复习资料第08讲 函数的奇偶性、对称性和周期性(精讲)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第08讲函数的奇偶性、周期性和对称性(精讲)①函数的奇偶性及其应用②函数的周期性③函数的对称性★④函数性质的综合应用一、函数的奇偶性奇偶性定义图象特点偶函数如果对于函数的定义域内任意一个,都有,那么函数就叫做偶函数关于轴对称奇函数如果对于函数的定义域内任意一个,都有,那么函数就叫做奇函数关于原点对称注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个,也在定义域内(即定义域关于原点对称).二、函数的对称性(1)若函数为偶函数,则函数关于对称.(2)若函数为奇函数,则函数关于点对称.(3)若,则函数关于对称.(4)若,则函数关于点对称.三、函数的周期性(1)周期函数:对于函数,如果存在一个非零常数,使得当取定义域内的任何值时,都有,那么就称函数为周期函数,称为这个函数的周期.(2)最小正周期:如果在周期函数的所有周期中存在一个最小的正数,那么称这个最小整数叫做一、必备知识整合小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com的最小正周期.1.奇偶性技巧(1)若奇函数在处有意义,则有;(2)对于运算函数有如下结论:①奇奇=奇;②偶偶=偶;③奇偶=非奇非偶;④奇奇=偶;⑤奇偶=奇;⑥偶偶=偶.(3)常见奇偶性函数模型奇函数:①函数或函数.②函数.③函数或函数④函数或函数.注意:关于①式,可以写成函数或函数.偶函数:①函数.②函数.③函数类型的一切函数.2.周期性技巧小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.函数的的对称性与周期性的关系(1)若函数有两条对称轴,,则函数是周期函数,且;(2)若函数的图象有两个对称中心,则函数是周期函数,且;(3)若函数有一条对称轴和一个对称中心,则函数是周期函数,且.4.对称性技巧(1)若函数关于直线对称,则.(2)若函数关于点对称,则.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)函数与关于轴对称,函数与关于原点对称.【题型一函数的奇偶性及其应用】1.判断函数奇偶性的方法(1)定法:义(2)象法:图(3)性法:质在公共定域有:奇义内±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.已知函数奇偶性可以解决的三个问题二、考点分类精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【典例1】(2023高三·全国·专题练习)判断下列函数的奇偶性.(1);(2);(3);(4)【典例2】已知是定义在R上的偶函数,且当时,.(1)求的解析式;(2)若,求实数的取值范围.一、单选题1.(2024·北京通州·二模)下列函数中,是奇函数且在区间上单调递减的是()A.B.C.D.2.(23-24高三下·河北沧州·阶段练习)若,函数为奇函数,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2024·河北保定·二模)函数的部分图象大致为()A.B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.D.4.(2024·安徽淮北·二模)若函数是偶函数(e是自然对数的底数),则实数的值为()A.B.C.D.5.(2024·云南贵州·二模)若函数的定义域为且图象关于轴对称,在上是增函数,且,则不等式的解是()A.B.C.D.二、多选题6.(2024·广东茂名·二模)已知函数为上的奇函数,且在R上单调递增.若,则实数的取值可以是()A.B.0C.1D.27.(2024·浙江杭州·二模)已知函数对任意实数均满足,则()A.B.C.D.函数在区间上不单调三、填空题小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com8.(2024·上海崇明·二模)已知函数为奇函数,则.9.(23-24高三上·云南昆明·阶段练习)为定义在上的奇函数,当时,,则时,.10.(2024·云南·模拟预测)若为奇函数,则.11.(2024·陕西西安·三模)已知函数,若,则的取值范围为.四、解答题12.(23-24高三上·江苏...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
免费
0下载
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
免费
0下载
2016年海南省高考数学试题及答案(文科).doc
2016年海南省高考数学试题及答案(文科).doc
免费
4下载
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
免费
0下载
2008年高考数学试卷(理)(北京)(空白卷).doc
2008年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
1997年高考数学真题(文科)(湖南自主命题).doc
1997年高考数学真题(文科)(湖南自主命题).doc
免费
17下载
2018年高考数学真题(文科)(天津自主命题).doc
2018年高考数学真题(文科)(天津自主命题).doc
免费
23下载
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
免费
0下载
2006年重庆高考文科数学真题及答案.doc
2006年重庆高考文科数学真题及答案.doc
免费
3下载
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
免费
0下载
2019年高考数学真题(理科)(北京自主命题).docx
2019年高考数学真题(理科)(北京自主命题).docx
免费
5下载
2014年高考数学试卷(文)(广东)(空白卷).doc
2014年高考数学试卷(文)(广东)(空白卷).doc
免费
0下载
2016年上海市闸北区高考数学二模试卷(文科).doc
2016年上海市闸北区高考数学二模试卷(文科).doc
免费
0下载
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
免费
0下载
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
免费
20下载
2017年上海市奉贤区高考数学一模试卷.doc
2017年上海市奉贤区高考数学一模试卷.doc
免费
0下载
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群