2024年新高考数学复习资料热点2-1 函数的单调性、奇偶性、周期性与对称性(8题型+满分技巧+限时检测)(原卷版).docx本文件免费下载 【共10页】

2024年新高考数学复习资料热点2-1 函数的单调性、奇偶性、周期性与对称性(8题型+满分技巧+限时检测)(原卷版).docx
2024年新高考数学复习资料热点2-1 函数的单调性、奇偶性、周期性与对称性(8题型+满分技巧+限时检测)(原卷版).docx
2024年新高考数学复习资料热点2-1 函数的单调性、奇偶性、周期性与对称性(8题型+满分技巧+限时检测)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com热点2-1函数的单调性、奇偶性、周期性与对称性函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。【题型1判断函数的单调性】满分技巧判断函数的单调性的四种方法1、定义法:按照取值、取值变形、定号、下结论的步骤判断或证明函数在区间上的单调性;2、图象法:对于熟悉的基本初等函数(或由基本初等函数构成的分段函数),可以通过利用图象来判断单调性;3、导数法:利用求导的方法(如有ex,lnx的超越函数)判断函数的单调性;4、复合法:针对一些简单的复合函数,可以利用符合函数的单调性法则(同增异减)来确定单调性。【例1】(2023·新疆乌鲁木齐·高三兵团二中校考阶段练习)下列函数中是偶函数且在区间上是增函数的是()A.B.C.D.【变式1-1】(2023·安徽·校联考模拟预测)已知是定义在上的偶函数,函数满足,且,在单调递减,则()A.在单调递减B.在单调递减C.在单调递减D.在单调递减小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式1-2】(2023·海南海口·华侨中学校考二模)已知偶函数在区间上单调递减,则函数的单调增区间是.【变式1-3】(2023·全国·高三专题练习)已知函数的定义域为R,对任意,且,都有,则下列说法正确的是()A.是增函数B.是减函数C.是增函数D.是减函数【变式1-4】(2023·江苏扬州·高三校联考期末)已知函数在定义域中满足,且在上单调递减,则可能是()A.B.C.D.【题型2利用函数的单调性求参数】满分技巧利用单调性求参数的三种情况:1、直接利用题意条件和单调性代入求参;2、分段函数求参,每段单调性都符合题意,相邻两段自变量临界点的函数值取到等号;3、复合函数求参,注意要满足定义域要求,通过分离常数法或构造函数法转化成恒成立或有解问题。【例2】(2023·四川南充·统考模拟预测)函数在上是减函数的一个充分不必要条件是()A.B.C.D.【变式2-1】(2023·江苏淮安·高三校考阶段练习)使得“函数在区间上单调递减”成立的一个充分不必要条件可以是()A.B.1C.D.0【变式2-2】(2023·全国·高三校联考阶段练习)若函数在上单调递增,则实数的取值范围为()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式2-3】(2023·贵州黔东南·高三校联考阶段练习)已知函数,若,都有成立,则的取值范围为()A.B.C.D.【变式2-4】(2023·甘肃白银·高三校考阶段练习)已知是R上的单调递减函数,则实数a的取值范围为.【题型3函数的奇偶性及应用】满分技巧1、常见的奇函数与偶函数(1)()为偶函数;(2)()为奇函数;(3)()为奇函数;(4)()为奇函数;(5)()为奇函数;(6)为偶函数;(7)为奇函数;2、函数奇偶性的应用(1)求函数值:将待求值利用就行转化为已知区间上的函数值求解;(2)求解析式:将待求区间上的自变量转化到已知解析式的区间上,再利用奇偶性的定义求出;(3)求参数:利用待定系数法求解,根据得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而求出参数的值。【例3】(2023·山东潍坊·统考模拟预测)已知函数,下列函数是奇函数的是()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式3-1】(2023·贵州·高三凯里一中校联考开学考试)设函数为奇函数,则实数的值为()A.B.0C.1D.2【变式3-2】(2023·福建泉州·高三培元中学校考阶段练习)已知函数,若为奇函数,且,则()A.B.C.D.【变式3-3】(2023·黑龙江哈尔滨·高三哈尔滨三中校考期末)已知为奇函数,为偶函数,且满足,则()A.B.C.D.【变式3-4】(2023·江西·高三校联考阶段练习)若奇函数,则()A.B.C.D.【题型4奇函数+常数求值】满分技巧已知为奇函数,则,设(其中为常数)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群