2025年新高考数学复习资料第08练 函数的奇偶性、对称性和周期性(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共51页】

2025年新高考数学复习资料第08练 函数的奇偶性、对称性和周期性(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第08练 函数的奇偶性、对称性和周期性(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第08练 函数的奇偶性、对称性和周期性(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第08练函数的奇偶性、周期性和对称性(精练)1.结合具体函数,了解奇、偶函数的概念和几何意义.2.了解函数周期性的概念和几何意义.一、单选题1.(2023·全国·高考真题)已知是偶函数,则()A.B.C.1D.2【答案】D【详解】因为为偶函数,则,又因为不恒为0,可得,即,则,即,解得.故选:D.2.(2023·天津·高考真题)已知函数的部分图象如下图所示,则的解析式可能为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案】D【分析】由图知函数为偶函数,应用排除,先判断B中函数的奇偶性,再判断A、C中函数在上的函数符号排除选项,即得答案.【详解】由图知:函数图象关于y轴对称,其为偶函数,且,由且定义域为R,即B中函数为奇函数,排除;当时、,即A、C中上函数值为正,排除;故选:D3.(2023·全国·高考真题)若为偶函数,则().A.B.0C.D.1【答案】B【分析】根据偶函数性质,利用特殊值法求出值,再检验即可.【详解】因为为偶函数,则,解得,当时,,,解得或,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则其定义域为或,关于原点对称.,故此时为偶函数.故选:B.4.(2022·全国·高考真题)已知函数的定义域为R,且,则()A.B.C.0D.1【答案】A【分析】法一:根据题意赋值即可知函数的一个周期为,求出函数一个周期中的的值,即可解出.【详解】[方法一]:赋值加性质因为,令可得,,所以,令可得,,即,所以函数为偶函数,令得,,即有,从而可知,,故,即,所以函数的一个周期为.因为,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,所以一个周期内的.由于22除以6余4,所以.故选:A.[方法二]:【最优解】构造特殊函数由,联想到余弦函数和差化积公式,可设,则由方法一中知,解得,取,所以,则,所以符合条件,因此的周期,,且,所以,由于22除以6余4,所以.故选:A.【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.5.(2022·全国·高考真题)已知函数的定义域均为R,且.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com若的图像关于直线对称,,则()A.B.C.D.【答案】D【分析】根据对称性和已知条件得到,从而得到,,然后根据条件得到的值,再由题意得到从而得到的值即可求解.【详解】因为的图像关于直线对称,所以,因为,所以,即,因为,所以,代入得,即,所以,.因为,所以,即,所以.因为,所以,又因为,联立得,,所以的图像关于点中心对称,因为函数的定义域为R,所以因为,所以.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以.故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.二、多选题6.(2022·全国·高考真题)已知函数及其导函数的定义域均为,记,若,均为偶函数,则()A.B.C.D.【答案】BC【分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】[方法一]:对称性和周期性的关系研究对于,因为为偶函数,所以即①,所以,所以关于对称,则,故C正确;对于,因为为偶函数,,,所以关于对称,由①求导,和,得,所以,所以关于对称,因为其定义域为R,所以,结合关于小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对称,从而周期,所以,,故B正确,D错误;若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知周期为2,关于对称,故可设,则,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2020年高考数学试卷(理)(新课标Ⅲ)(空白卷).doc
2020年高考数学试卷(理)(新课标Ⅲ)(空白卷).doc
免费
0下载
2022年高考数学试卷(理)(全国乙卷)(解析卷) (6).docx
2022年高考数学试卷(理)(全国乙卷)(解析卷) (6).docx
免费
0下载
2013年全国统一高考数学试卷(文科)(新课标ⅱ)(原卷版).doc
2013年全国统一高考数学试卷(文科)(新课标ⅱ)(原卷版).doc
免费
16下载
2024年新高考数学复习资料重难点突破04 立体几何表面积与体积(原卷版).docx
2024年新高考数学复习资料重难点突破04 立体几何表面积与体积(原卷版).docx
免费
0下载
2024年新高考数学复习资料重难点突破01 三角函数中有关ω的范围问题(解析版).docx
2024年新高考数学复习资料重难点突破01 三角函数中有关ω的范围问题(解析版).docx
免费
0下载
2014年高考数学真题(文科)(北京自主命题).doc
2014年高考数学真题(文科)(北京自主命题).doc
免费
13下载
高中数学高考数学10大专题技巧--专题01 五组秒杀公式模型(学生版).docx.doc
高中数学高考数学10大专题技巧--专题01 五组秒杀公式模型(学生版).docx.doc
免费
0下载
2024年高考数学试卷(天津)(解析卷).pdf
2024年高考数学试卷(天津)(解析卷).pdf
免费
0下载
2008年高考数学试卷(文)(浙江)(解析卷).doc
2008年高考数学试卷(文)(浙江)(解析卷).doc
免费
0下载
2022年高考数学试卷(理)(全国甲卷)(空白卷) (2).docx
2022年高考数学试卷(理)(全国甲卷)(空白卷) (2).docx
免费
0下载
2011年高考数学真题(理科)(陕西自主命题).doc
2011年高考数学真题(理科)(陕西自主命题).doc
免费
15下载
2025版新高考版 数学考点清单+题型清单04专题四导数及其应用1_4.3  导数的综合运用讲解册.pdf
2025版新高考版 数学考点清单+题型清单04专题四导数及其应用1_4.3 导数的综合运用讲解册.pdf
免费
28下载
1996年高考数学真题(文科)(安徽自主命题).doc
1996年高考数学真题(文科)(安徽自主命题).doc
免费
30下载
2024年新高考数学复习资料重难点突破03  数列与函数综合(原卷版).docx
2024年新高考数学复习资料重难点突破03 数列与函数综合(原卷版).docx
免费
0下载
2014年江苏高考数学试题及答案.doc
2014年江苏高考数学试题及答案.doc
免费
23下载
2024年新高考数学复习资料重难点突破03 同构(解析版).docx
2024年新高考数学复习资料重难点突破03 同构(解析版).docx
免费
0下载
2024届高考数学考向核心卷—文科 全国卷版 答题卡.pdf
2024届高考数学考向核心卷—文科 全国卷版 答题卡.pdf
免费
8下载
2000年湖北高考理科数学真题及答案.doc
2000年湖北高考理科数学真题及答案.doc
免费
12下载
2008年天津高考文科数学试题及答案(Word版).doc
2008年天津高考文科数学试题及答案(Word版).doc
免费
5下载
2024年新高考数学复习资料专题17 函数求参问题(含2021-2023高考真题)(原卷版).docx
2024年新高考数学复习资料专题17 函数求参问题(含2021-2023高考真题)(原卷版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群