小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第08练函数的奇偶性、周期性和对称性(精练)1.结合具体函数,了解奇、偶函数的概念和几何意义.2.了解函数周期性的概念和几何意义.一、单选题1.(2023·全国·高考真题)已知是偶函数,则()A.B.C.1D.2【答案】D【详解】因为为偶函数,则,又因为不恒为0,可得,即,则,即,解得.故选:D.2.(2023·天津·高考真题)已知函数的部分图象如下图所示,则的解析式可能为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案】D【分析】由图知函数为偶函数,应用排除,先判断B中函数的奇偶性,再判断A、C中函数在上的函数符号排除选项,即得答案.【详解】由图知:函数图象关于y轴对称,其为偶函数,且,由且定义域为R,即B中函数为奇函数,排除;当时、,即A、C中上函数值为正,排除;故选:D3.(2023·全国·高考真题)若为偶函数,则().A.B.0C.D.1【答案】B【分析】根据偶函数性质,利用特殊值法求出值,再检验即可.【详解】因为为偶函数,则,解得,当时,,,解得或,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则其定义域为或,关于原点对称.,故此时为偶函数.故选:B.4.(2022·全国·高考真题)已知函数的定义域为R,且,则()A.B.C.0D.1【答案】A【分析】法一:根据题意赋值即可知函数的一个周期为,求出函数一个周期中的的值,即可解出.【详解】[方法一]:赋值加性质因为,令可得,,所以,令可得,,即,所以函数为偶函数,令得,,即有,从而可知,,故,即,所以函数的一个周期为.因为,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,所以一个周期内的.由于22除以6余4,所以.故选:A.[方法二]:【最优解】构造特殊函数由,联想到余弦函数和差化积公式,可设,则由方法一中知,解得,取,所以,则,所以符合条件,因此的周期,,且,所以,由于22除以6余4,所以.故选:A.【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.5.(2022·全国·高考真题)已知函数的定义域均为R,且.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com若的图像关于直线对称,,则()A.B.C.D.【答案】D【分析】根据对称性和已知条件得到,从而得到,,然后根据条件得到的值,再由题意得到从而得到的值即可求解.【详解】因为的图像关于直线对称,所以,因为,所以,即,因为,所以,代入得,即,所以,.因为,所以,即,所以.因为,所以,又因为,联立得,,所以的图像关于点中心对称,因为函数的定义域为R,所以因为,所以.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以.故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.二、多选题6.(2022·全国·高考真题)已知函数及其导函数的定义域均为,记,若,均为偶函数,则()A.B.C.D.【答案】BC【分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】[方法一]:对称性和周期性的关系研究对于,因为为偶函数,所以即①,所以,所以关于对称,则,故C正确;对于,因为为偶函数,,,所以关于对称,由①求导,和,得,所以,所以关于对称,因为其定义域为R,所以,结合关于小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对称,从而周期,所以,,故B正确,D错误;若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知周期为2,关于对称,故可设,则,...