小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第11练对数与对数函数(精练)1.理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.2.通过实例,了解对数函数的概念.能用描点法或借助计算工具画出具体对数函数的图象,理解对数函数的单调性与特殊点.3.了解指数函数y=ax与对数函数y=logaxa>0,且a≠1互为反函数.一、单选题1.(2023·北京·高考真题)下列函数中,在区间上单调递增的是()A.B.C.D.【答案】C【分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC,举反例排除D即可.【详解】对于A,因为在上单调递增,在上单调递减,所以在上单调递减,故A错误;对于B,因为在上单调递增,在上单调递减,所以在上单调递减,故B错误;对于C,因为在上单调递减,在上单调递减,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以在上单调递增,故C正确;对于D,因为,,显然在上不单调,D错误.故选:C.2.(2022·天津·高考真题)化简的值为()A.1B.2C.4D.6【答案】B【分析】根据对数的性质可求代数式的值.【详解】原式,故选:B3.(2022·浙江·高考真题)已知,则()A.25B.5C.D.【答案】C【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.【详解】因为,,即,所以.故选:C.4.(2022·北京·高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.当,时,二氧化碳处于液态B.当,时,二氧化碳处于气态C.当,时,二氧化碳处于超临界状态D.当,时,二氧化碳处于超临界状态【答案】D【分析】根据与的关系图可得正确的选项.【详解】当,时,,此时二氧化碳处于固态,故A错误.当,时,,此时二氧化碳处于液态,故B错误.当,时,与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C错误.当,时,因,故此时二氧化碳处于超临界状态,故D正确.故选:D二、多选题5.(2023·全国·高考真题)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级,其中常数是听觉下限阈值,是实际声压.下表为不同声源的声压级:声源与声源的距离声压级小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com燃油汽车10混合动力汽车10电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车处测得实际声压分别为,则().A.B.C.D.【答案】ACD【分析】根据题意可知,结合对数运算逐项分析判断.【详解】由题意可知:,对于选项A:可得,因为,则,即,所以且,可得,故A正确;对于选项B:可得,因为,则,即,所以且,可得,当且仅当时,等号成立,故B错误;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对于选项C:因为,即,可得,即,故C正确;对于选项D:由选项A可知:,且,则,即,可得,且,所以,故D正确;故选:ACD.三、填空题6.(2023·北京·高考真题)已知函数,则.【答案】1【分析】根据给定条件,把代入,利用指数、对数运算计算作答.【详解】函数,所以.故答案为:17.(2022·全国·高考真题)若是奇函数,则,.【答案】;.【分析】根据奇函数的定义即可求出.【详解】[方法一]:奇函数定义域的对称性若,则的定义域为,不关于原点对称小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com若奇函数的有意义,则且且,函数为奇函数,定义域关于原点对称,,解得,由得,,,故答案为:;.[方法二]:函数的奇偶性求参函数为奇函数[方法三]:因为函数为奇函数,所以其定义域关于原点对称.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由可得,,所以,解得...