2025年新高考数学复习资料微专题21 数列的奇偶项问题.docx本文件免费下载 【共11页】

2025年新高考数学复习资料微专题21 数列的奇偶项问题.docx
2025年新高考数学复习资料微专题21 数列的奇偶项问题.docx
2025年新高考数学复习资料微专题21 数列的奇偶项问题.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com微专题21数列的奇偶项问题高考定位有关数列的奇偶项问题是高考中经常涉及的问题,解决此类问题的关键在于搞清数列奇数项和偶数项的首项、项数、公差(比)等,涉及求通项、求和等.(1)求通项公式常用的方法有:隔项等差、等比数列型:将用2k-1或2k替代n,求出a2k-1,a2k的通项;(2)求数列的前n项和常用的方法有:方法一:分别求出S奇,S偶,利用Sn=S奇+S偶,这种思路本质上是分组求和;方法二:把a2k-1+a2k看作一项,求出S2k,再利用S2k-1=S2k-a2k求出S2k-1,这种思路本质上是并项求和.【真题体验】(2021·新高考Ⅰ卷)已知数列{an}满足a1=1,an+1=(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和.【热点突破】热点一an+1+an=f(n)或an+1·an=f(n)型例1(2024·衡水调研)已知数列{an}的前n项和为Sn=n2+4n(n∈N*).(1)求数列{an}的通项公式;(2)若数列{cn}满足cn+1+cn=an,且不等式cn+2n2≥0对任意的n∈N*都成立,求c1的取值范围.训练1在数列{an}中,已知a1=1,an·an+1=,记Sn为{an}的前n项和,bn=a2n+a2n-1.(1)判断数列{bn}是否为等比数列,并写出其通项公式;(2)求数列{an}的通项公式;(3)求Sn.热点二an=型例2已知数列{an},a1=1,an+1=(1)是否存在实数λ,使得数列{a2n-λ}是等比数列?若存在,求出λ的值;若不小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com存在,请说明理由.(2)若Sn是数列{an}的前n项和,求满足Sn>0的所有正整数n.训练2(2024·烟台模拟)记等差数列{an}的公差为d,前n项和为Sn;等比数列{bn}的公比为q,前n项和为Tn,已知b3=4a1,S4=b3+6,T3=7a1.(1)求d和q;(2)若a1=1,q>0,cn=求{cn}的前2n项和.热点三通项公式中含有(-1)n型例3(2024·宁波模拟)已知数列{an}满足a1=1,且对任意正整数m,n都有am+n=an+am+2mn.(1)求数列{an}的通项公式;(2)求数列{(-1)nan}的前n项和Sn.训练3(2024·珠海质检)已知数列{an}满足a1=1,an+an+1=λ·2n(n∈N*,λ是常数).(1)若λ=0,证明:{an}是等比数列;(2)若λ≠0,且{an}是等比数列,求λ的值以及数列{(-1)nlog2a3n-1}的前n项和Sn.【精准强化练】1.已知数列{an}的前n项和为Sn,a1=4且an+1=Sn+4(n∈N*).(1)求数列{an}的通项公式;(2)若bn=(-1)n+1,求数列{bn}的前n项和Tn.2.(2024·坊考潍统)已知正项数列{an}满足a1=1,an+1(an+2)=2a+5an+2(n∈N*).(1)证明:数列{an+1}是等比数列,并求数列{an}的通项公式;(2)设bn=(-1)nlog4(an+1),数列{bn}的前n项和为Tn,求Tn.3.(2024·湖北部分重点中考学联)记Sn为数列{an}的前n项和,已知a1=1,a2=,且数列{4nSn+(2n+3)an}是等差数列.(1)证明:是等比数列,求{an}的通项公式;(2)设bn=求数列{bn}的前2n项和T2n.4.(2024·合肥调研)已知数列{an}满足an+1+an=4n-3(n∈N*).(1)若数列{an}是等差数列,求a1的值;(2)当a1=2时,求数列{an}的前n项和Sn.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析版】(2021·新高考Ⅰ卷)已知数列{an}满足a1=1,an+1=(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和.解(1)因为bn=a2n,且a1=1,an+1=所以b1=a2=a1+1=2,b2=a4=a3+1=a2+2+1=5.因为bn=a2n,所以bn+1=a2n+2=a2n+1+1=a2n+1+1=a2n+2+1=a2n+3,所以bn+1-bn=a2n+3-a2n=3,所以列数{bn}是以2首,为项3公差的等差列,为数所以bn=2+3(n-1)=3n-1,n∈N*.(2)因为an+1=所以k∈N*,时a2k=a2k-1+1=a2k-1+1,即a2k=a2k-1+1,①a2k+1=a2k+2,②a2k+2=a2k+1+1=a2k+1+1,即a2k+2=a2k+1+1,③所以①+②得a2k+1=a2k-1+3,即a2k+1-a2k-1=3,所以列数{an}的奇是以数项1首,为项3公差的等差列;为数②+③得a2k+2=a2k+3,即a2k+2-a2k=3,又a2=2,所以列数{an}的偶是以数项2首,为项3公差的等差列为数.所以列数{an}的前20和项S20=(a1+a3+a5+…+a19)+(a...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2015年北京市高考数学试卷(文科)往年高考真题.doc
2015年北京市高考数学试卷(文科)往年高考真题.doc
免费
0下载
2025年新高考数学复习资料微专题15 三角中的最值、范围问题.docx
2025年新高考数学复习资料微专题15 三角中的最值、范围问题.docx
免费
0下载
2025年新高考数学复习资料2025版新教材高考数学第二轮复习专题练--6.5 数列的综合(含答案).docx
2025年新高考数学复习资料2025版新教材高考数学第二轮复习专题练--6.5 数列的综合(含答案).docx
免费
0下载
2024年新高考数学复习资料专题16 抛物线的焦点弦、中点弦、弦长问题(解析版).docx
2024年新高考数学复习资料专题16 抛物线的焦点弦、中点弦、弦长问题(解析版).docx
免费
0下载
第01讲 计数原理(三大题型)(课件).pptx
第01讲 计数原理(三大题型)(课件).pptx
免费
0下载
2024年新高考数学复习资料专题4.2 三角函数的图象与性质【八大题型】(举一反三)(新高考专用)(原卷版).docx
2024年新高考数学复习资料专题4.2 三角函数的图象与性质【八大题型】(举一反三)(新高考专用)(原卷版).docx
免费
0下载
2023年北京卷高考真题数学试题 Word版含解析.doc
2023年北京卷高考真题数学试题 Word版含解析.doc
免费
16下载
2024版《大考卷》全程考评特训卷·数学·文科【统考版】素养训练(五).docx
2024版《大考卷》全程考评特训卷·数学·文科【统考版】素养训练(五).docx
免费
30下载
2025年新高考数学复习资料第01讲 导数的概念及其意义、导数的运算(十二大题型)(练习)(原卷版)(1).docx
2025年新高考数学复习资料第01讲 导数的概念及其意义、导数的运算(十二大题型)(练习)(原卷版)(1).docx
免费
0下载
高中数学高考数学10大专题技巧--专题17 单变量不含参不等式证明方法之虚设零点(教师版).docx
高中数学高考数学10大专题技巧--专题17 单变量不含参不等式证明方法之虚设零点(教师版).docx
免费
0下载
专题04 三角函数与解三角形(三大类型题)精选15区真题(解析版).docx
专题04 三角函数与解三角形(三大类型题)精选15区真题(解析版).docx
免费
0下载
2023年高考数学真题(新高考Ⅰ)(解析版).docx
2023年高考数学真题(新高考Ⅰ)(解析版).docx
免费
1下载
2013年浙江省高考数学【理】(原卷版).doc
2013年浙江省高考数学【理】(原卷版).doc
免费
18下载
7. 衡水中学高考积累与改错_高三数学(第3本)_126页.pdf
7. 衡水中学高考积累与改错_高三数学(第3本)_126页.pdf
免费
18下载
2012年上海市黄浦区高考数学一模试卷(理科).doc
2012年上海市黄浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学高考数学10大专题技巧--专题30  证明数量关系型问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题30 证明数量关系型问题(学生版).docx.doc
免费
0下载
2024年新高考数学复习资料专题14 双曲线中的向量问题(解析版).docx
2024年新高考数学复习资料专题14 双曲线中的向量问题(解析版).docx
免费
0下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
精品解析:江苏省扬州中学、盐城中学、淮阴中学、丹阳中学四校2023-2024学年高三下学期调研测试联考数学试卷(解析版).docx
精品解析:江苏省扬州中学、盐城中学、淮阴中学、丹阳中学四校2023-2024学年高三下学期调研测试联考数学试卷(解析版).docx
免费
0下载
高考数学专题10 直线和圆的方程(4大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题10 直线和圆的方程(4大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群