2025年新高考数学复习资料考点09函数的对称性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx本文件免费下载 【共59页】

2025年新高考数学复习资料考点09函数的对称性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
2025年新高考数学复习资料考点09函数的对称性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
2025年新高考数学复习资料考点09函数的对称性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考点09函数的对称性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.能通过平移,分析得出一般的轴对称和中心对称公式和推论.2.会利用对称公式解决问题.【知识点】1.奇函数、偶函数的对称性(1)奇函数关于原点对称,偶函数关于y轴对称.(2)若f(x-2)是偶函数,则函数f(x)图象的对称轴为x=-2;若f(x-2)是奇函数,则函数f(x)图象的对称中心为(-2,0).2.若函数y=f(x)的图象关于直线x=a对称,则f(a-x)=f(a+x);若函数y=f(x)满足f(a-x)=-f(a+x),则函数的图象关于点(a,0)对称.3.两个函数图象的对称(1)函数y=f(x)与y=f(-x)关于y轴对称;(2)函数y=f(x)与y=-f(x)关于x轴对称;(3)函数y=f(x)与y=-f(-x)关于原点对称.【核心题型】题型一轴对称问题函数y=f(x)的象于直图关线x=a对称⇔f(x)=f(2a-x)⇔f(a-x)=f(a+x);若函数y=f(x)足满f(a+x)=f(b-x),则y=f(x)的象于直图关线x=成.轴对称【例题1】(2024·辽宁·一模)已知函数为偶函数,且当时,若,则()A.B.C.D.【答案】A【分析】由题意判断的图象关于直线对称,结合当时的函数解析式,判断其单调性,即可判断在直线两侧的增减,从而结合,可得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com化简,即得答案.【详解】因为函数为偶函数,故其图象关于y轴对称,则的图象关于直线对称,当时,,因为在上单调递增且,而在上单调递减,故在上单调递减,则在上单调递增,故由可得,即,则,故,故选:A【式变1】(2024·四川泸州·二模)定义域为的函数满足,当时,函数,设函数,则方程的所有实数根之和为()A.5B.6C.7D.8【答案】D【分析】首先得到是以为周期的周期函数,关于对称,在同一平面直角坐标系中画出与的图象,数形结合判断函数的交点,再根据对称性计算可得.【详解】因为定义域为的函数满足,即,所以是以为周期的周期函数,又,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以关于对称,又,又,又当时,函数,所以,则,令,即,在同一平面直角坐标系中画出与的图象如下所示:由图可得与有个交点,交点横坐标分别为,且与关于对称,与关于对称,所以,,所以方程的所有实数根之和为.故选:D【式变2】(2024·陕西安康·模拟预测)已知函数,公差不为0的等差数列的前项和为.若,则()A.1012B.2024C.3036D.4048【答案】B【分析】先根据题中条件得到,故,结合等差数列的前项和公小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com式可得.【详解】由题可知函数的图象关于直线对称,因为的公差不为0,所以又因,所以,所以,故,故选:B【式变3】(2024·全国·模拟预测)已知函数及其导数的定义域为,记,且都为奇函数.若,则()A.0B.C.2D.【答案】C【分析】根据的性质结合导数运算分析可知的图象关于对称,结合奇函数分析可知的周期为4,根据周期性运算求解.【详解】因为为奇函数,则,即,可知的图象关于点对称,可得,即,可知的图象关于对称,则,又因为为奇函数,则,可得,可知的周期为4,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以.故选:C.题型二中心对称问题函数y=f(x)的象于点图关(a,b)对称⇔f(a+x)+f(a-x)=2b⇔2b-f(x)=f(2a-x);若函数y=f(x)足满f(a+x)+f(b-x)=c,则y=f(x)的象于点成中心.图关对称【例题2】(2024·全国·模拟预测)设是定义域为的偶函数,且为奇函数.若,则()A.B.C.D.【答案】A【分析】根据所给函数性质求出函数周期,利用周期化简即可得解.【详解】由为奇函数,得,得的图象关于点对称,所以.又因为是定义域为的偶函数,所以,,所以的周期为4,所以.故选:A.【式变1】(2024·全国·模拟预测)定义在上的偶函数满足,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com()A.B.C.D.是奇函数【答案】C【分析】根据题中条件,可知,故A、B错误;对于C,令,可得...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
免费
0下载
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
免费
0下载
2016年海南省高考数学试题及答案(文科).doc
2016年海南省高考数学试题及答案(文科).doc
免费
4下载
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
免费
0下载
2008年高考数学试卷(理)(北京)(空白卷).doc
2008年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
1997年高考数学真题(文科)(湖南自主命题).doc
1997年高考数学真题(文科)(湖南自主命题).doc
免费
17下载
2018年高考数学真题(文科)(天津自主命题).doc
2018年高考数学真题(文科)(天津自主命题).doc
免费
23下载
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
免费
0下载
2006年重庆高考文科数学真题及答案.doc
2006年重庆高考文科数学真题及答案.doc
免费
3下载
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
免费
0下载
2019年高考数学真题(理科)(北京自主命题).docx
2019年高考数学真题(理科)(北京自主命题).docx
免费
5下载
2014年高考数学试卷(文)(广东)(空白卷).doc
2014年高考数学试卷(文)(广东)(空白卷).doc
免费
0下载
2016年上海市闸北区高考数学二模试卷(文科).doc
2016年上海市闸北区高考数学二模试卷(文科).doc
免费
0下载
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
免费
0下载
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
免费
20下载
2017年上海市奉贤区高考数学一模试卷.doc
2017年上海市奉贤区高考数学一模试卷.doc
免费
0下载
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群