小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com培优点05三角函数中有关ω的范围问题(4种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】在三角函数的图象与性质中,ω的求解是近几年高考的一个热点内容,但因其求法复杂,涉及的知识点多,历来是我们复习中的难点.【核心题型】题型一三角函数的单调性与ω的关系确定函的,根据之的包含系,建立不等式,即可求数单调区间区间间关ω的取范.值围【例题1】(2024·广东湛江·一模)已知函数在区间上单调递增,则的取值范围是()A.B.C.D.【答案】D【分析】由的范围可求得的范围,结合正弦函数单调性,采用整体代换的方式即可构造不等式组求得结果.【详解】当时,,在上单调递增,,解得:,又,,解得:,又,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即的取值范围为.故选:D.【变式1】(多选)(23-24高三上·辽宁葫芦岛·期末)已知函数在区间上单调,且满足,下列结论正确的有()A.B.若,则函数的最小正周期为C.关于方程在区间上最多有4个不相等的实数解D.若函数在区间上恰有5个零点,则的取值范围为【答案】ABD【分析】对A:利用对称性直接求得;对B:根据对称中心与对称轴可得周期表达式,结合区间上单调求出函数的最小正周期,即可判断;对C:先判断出周期,结合周期越大,的根的个数越少,解出在区间上最多有3个不相等的实数根,即可判断.对D:由题意分析,建立关于的不等式组,求出的取值范围.【详解】函数满足.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对A:因为,所以,故A正确;对B:由于,所以函数的一条对称轴方程为.又为一个对称中心,由正弦图像和性质可知,所以函数的最小正周期满足,即.又区间上单调,故,即,故,故B正确;对C:函数在区间上单调,且满足,可得:,所以周期,又周期越大,的根的个数越少.当时,,又,,得.所以在区间上有3个不相等的实数根:,或,故至多3个不同的实数解,故C错误.对D:函数在区间上恰有5个零点,所以,所以,解得:,且满足,即,即小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,故.故D正确.故选:ABD【变式2】(2024·福建南平·二模)函数在区间上单调递增,且在区间上恰有两个极值点,则的取值范围是.【答案】【分析】利用正弦型函数的单调性可得,利用正弦型函数的极值点可得.【详解】由在区间上单调递增,可得,,,即,,,即,又在区间上恰有两个极值点,可得,即.综上,.故答案为:.【变式3】(23-24高三下·甘肃·阶段练习)已知函数.(1)当时,求函数在点处的切线方程;(2)若函数的导函数为,且在上为减函数,求ω的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】(1)(2)【分析】(1)代入,依次求得,即可得解;(2)原题等价于在上恒成立,进一步结合复合函数单调性、值域即可列出不等式组求解.【详解】(1)因为,所以,故,且,从而,此时函数在点处的切线方程,即.(2),,因为在上为减函数,所以在上恒成立,即在上恒成立,也就是在上恒成立,注意到,且当时,有,所以当且仅当满足题意,解得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com也就是说ω的取值范围为.题型二三角函数的对称性与ω的关系三角函相或相中心之的数两条邻对称轴两个邻对称间“水平隔间”,相的和为邻对称轴中心之的对称间“水平隔间”,就明,我可根据三角函的性究其周期为这说们数对称来研性,解的在于用整体代的思想,建立于决问题关键运换关ω的不等式,而可以究组进研“ω”的取范.值围【例题2】(2023·内蒙古赤峰·三模)已知函数的一条对称轴是,若存在使直线与函数的图像相切,则当取最小正数时,实数m的取值范围是()A.B.C.D.【答案】D【分析】利用辅助角公式化简函数解析式,结合正弦函数的对称性求,再由导数的几何意义求m的取值范围.【详解】, 是的一条对称轴,∴,,∴,又,∴的最小正整数值为2.∴,∴,小学、初中、高中各种试...