2025年新高考数学复习资料培优点05三角函数中有关ω的范围问题(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx本文件免费下载 【共66页】

2025年新高考数学复习资料培优点05三角函数中有关ω的范围问题(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
2025年新高考数学复习资料培优点05三角函数中有关ω的范围问题(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
2025年新高考数学复习资料培优点05三角函数中有关ω的范围问题(4种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com培优点05三角函数中有关ω的范围问题(4种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】在三角函数的图象与性质中,ω的求解是近几年高考的一个热点内容,但因其求法复杂,涉及的知识点多,历来是我们复习中的难点.【核心题型】题型一三角函数的单调性与ω的关系确定函的,根据之的包含系,建立不等式,即可求数单调区间区间间关ω的取范.值围【例题1】(2024·广东湛江·一模)已知函数在区间上单调递增,则的取值范围是()A.B.C.D.【答案】D【分析】由的范围可求得的范围,结合正弦函数单调性,采用整体代换的方式即可构造不等式组求得结果.【详解】当时,,在上单调递增,,解得:,又,,解得:,又,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即的取值范围为.故选:D.【变式1】(多选)(23-24高三上·辽宁葫芦岛·期末)已知函数在区间上单调,且满足,下列结论正确的有()A.B.若,则函数的最小正周期为C.关于方程在区间上最多有4个不相等的实数解D.若函数在区间上恰有5个零点,则的取值范围为【答案】ABD【分析】对A:利用对称性直接求得;对B:根据对称中心与对称轴可得周期表达式,结合区间上单调求出函数的最小正周期,即可判断;对C:先判断出周期,结合周期越大,的根的个数越少,解出在区间上最多有3个不相等的实数根,即可判断.对D:由题意分析,建立关于的不等式组,求出的取值范围.【详解】函数满足.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com对A:因为,所以,故A正确;对B:由于,所以函数的一条对称轴方程为.又为一个对称中心,由正弦图像和性质可知,所以函数的最小正周期满足,即.又区间上单调,故,即,故,故B正确;对C:函数在区间上单调,且满足,可得:,所以周期,又周期越大,的根的个数越少.当时,,又,,得.所以在区间上有3个不相等的实数根:,或,故至多3个不同的实数解,故C错误.对D:函数在区间上恰有5个零点,所以,所以,解得:,且满足,即,即小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,故.故D正确.故选:ABD【变式2】(2024·福建南平·二模)函数在区间上单调递增,且在区间上恰有两个极值点,则的取值范围是.【答案】【分析】利用正弦型函数的单调性可得,利用正弦型函数的极值点可得.【详解】由在区间上单调递增,可得,,,即,,,即,又在区间上恰有两个极值点,可得,即.综上,.故答案为:.【变式3】(23-24高三下·甘肃·阶段练习)已知函数.(1)当时,求函数在点处的切线方程;(2)若函数的导函数为,且在上为减函数,求ω的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】(1)(2)【分析】(1)代入,依次求得,即可得解;(2)原题等价于在上恒成立,进一步结合复合函数单调性、值域即可列出不等式组求解.【详解】(1)因为,所以,故,且,从而,此时函数在点处的切线方程,即.(2),,因为在上为减函数,所以在上恒成立,即在上恒成立,也就是在上恒成立,注意到,且当时,有,所以当且仅当满足题意,解得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com也就是说ω的取值范围为.题型二三角函数的对称性与ω的关系三角函相或相中心之的数两条邻对称轴两个邻对称间“水平隔间”,相的和为邻对称轴中心之的对称间“水平隔间”,就明,我可根据三角函的性究其周期为这说们数对称来研性,解的在于用整体代的思想,建立于决问题关键运换关ω的不等式,而可以究组进研“ω”的取范.值围【例题2】(2023·内蒙古赤峰·三模)已知函数的一条对称轴是,若存在使直线与函数的图像相切,则当取最小正数时,实数m的取值范围是()A.B.C.D.【答案】D【分析】利用辅助角公式化简函数解析式,结合正弦函数的对称性求,再由导数的几何意义求m的取值范围.【详解】, 是的一条对称轴,∴,,∴,又,∴的最小正整数值为2.∴,∴,小学、初中、高中各种试...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群