2025年新高考数学复习资料重难点突破04 双变量与多变量问题(七大题型)(解析版).docx本文件免费下载 【共64页】

2025年新高考数学复习资料重难点突破04 双变量与多变量问题(七大题型)(解析版).docx
2025年新高考数学复习资料重难点突破04 双变量与多变量问题(七大题型)(解析版).docx
2025年新高考数学复习资料重难点突破04 双变量与多变量问题(七大题型)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点突破04双变量与多变量问题目录01与方法技巧总结...............................................................................................................................202题型归纳总结...................................................................................................................................2题双变量单单问题型一:....................................................................................................................2题双变量型二:不等式:变量问题转化为单.......................................................................................7题双变量型三:不等式:问题极和差商值积.....................................................................................14题双变量型四:不等式:点中型.........................................................................................................19题双变量型五:不等式:剪刀模型.....................................................................................................24题双变量型六:不等式:主元法.........................................................................................................30题双变量型七:不等式:与差代比代值换值换.................................................................................3503关过测试.........................................................................................................................................41小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.题双变量问题型一:单调【典例1-1】(2024·河北石家庄·模拟预测)已知函数,.(1)讨论函数的单调性;(2)若,对任意,当时,不等式恒成立,求实数m的取值范围.【解析】(1),若,则恒成立,当且仅当时等号成立,故的增区间为,无减区间.若,则当或时,;当时,,故的增区间为,减区间为,若,同理可得的增区间为,减区间为.(2)若,则,由(1)可得的增区间为,故即为,故,设,故为上的减函数,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com而,所以在上恒成立,故在上恒成立,设,故,当时,,当时,,故在上为增函数,在上为减函数,故,故即【典例1-2】已知函数.(1)当时,求曲线在处的切线方程;(2)设,证明:对任意,,.【解析】(1)当时,,,切点为求导,切线斜率曲线在处的切线方程为.(2),的定义域为,求导,在上单调递减.不妨假设,∴等价于.即.令,则.,,.从而在单调减少,故,即,故对任意.式【变1-1】已知函数.(1)讨论函数的单调性;(2)设,如果对任意,,求证:.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】(1)函数定义域为,,当①时,,在单调递增;当②时,,在单调递减;当③时,由得,所以在单调递增,在单调递减.(2)证明:不妨设而当时,由(1)可知在单调递减,从而,等价于,.构造函数,只需在单调递减,即在恒成立,分离参数法:,只需.式【变1-2】(2024·安徽·三模)设,函数.()讨论函数Ⅰ在定义域上的单调性;()若函数Ⅱ的图象在点处的切线与直线平行,且对任意,,不等式恒成立,求实数的取值范围.【解析】()Ⅰ的定义域是..(1)当时,,的定义域内单增;(2)当时,由得,.此时在内单增,在内单减;(3)当时,,的定义域内单减.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com()因为Ⅱ,所以,.此时.由()知,Ⅰ时...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
免费
0下载
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
免费
0下载
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
免费
0下载
2023年新课标全国Ⅰ卷数学真题.docx
2023年新课标全国Ⅰ卷数学真题.docx
免费
0下载
2023高考真题 新高考II卷数学-解析 .pdf
2023高考真题 新高考II卷数学-解析 .pdf
免费
12下载
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
免费
0下载
2018年上海市高考数学试卷(1)往年高考真题.doc
2018年上海市高考数学试卷(1)往年高考真题.doc
免费
0下载
2025年新高考数学复习资料提优点4 必要性探路.pptx
2025年新高考数学复习资料提优点4 必要性探路.pptx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
免费
0下载
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
免费
0下载
2014年浙江省高考数学试卷(理科).doc
2014年浙江省高考数学试卷(理科).doc
免费
1下载
专题06 平面向量(15区新题速递)(解析版).docx
专题06 平面向量(15区新题速递)(解析版).docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
2012年高考数学试卷(理)(上海)(解析卷).doc
2012年高考数学试卷(理)(上海)(解析卷).doc
免费
0下载
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群