2025年新高考数学复习资料思维拓展02 抽象函数和复合函数的应用(精讲+精练)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共35页】

2025年新高考数学复习资料思维拓展02 抽象函数和复合函数的应用(精讲+精练)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料思维拓展02 抽象函数和复合函数的应用(精讲+精练)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料思维拓展02 抽象函数和复合函数的应用(精讲+精练)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)思维拓展02抽象函数与复合函数的应用(精讲+精练)①抽象函数的性质(定义域、单调性、奇偶性、周期性、对称性)②常见抽象函数模型①—一次函数、二次函数、反比例函数③常见抽象函数模型②—指对幂函数、三角函数④复合函数的应用一、抽象函数的性质1.周期性:;;;(为常数);2.对称性:对称轴:或者关于对称;对称中心:或者关于对称;3.如果同时关于对称,又关于对称,则的周期4.单调性与对称性(或奇偶性)结合解不等式问题①在上是奇函数,且单调递增若解不等式,则有;在上是奇函数,且单调递减若解不等式,则有;②在上是偶函数,且在单调递增若解不等式,则有(不变号加绝对值);一、必备知识整合小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com在上是偶函数,且在单调递减若解不等式,则有(变号加绝对值);③关于对称,且单调递增若解不等式,则有;关于对称,且单调递减若解不等式,则有;④关于对称,且在单调递增若解不等式,则有(不变号加绝对值);关于对称,且在单调递减若解不等式,则有(不变号加绝对值);5.常见的特殊函数性质一览①是奇函数②(为常数)是奇函数③或者或者或者是奇函数④关于对称⑤复合函数的奇偶性:有偶为偶,全奇为奇二、抽象函数的模型【反比例函数模型】反比例函数:,则,【一次函数模型】模型1:若,则;模型2:若,则为奇函数;模型3:若则;模型4:若则;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【指数函数模型】模型1:若,则;模型2:若,则;模型3:若,则;模型4:若,则;【对数函数模型】模型1:若,则模型2:若,则模型3:若,则模型4:若,则模型5:若,则【幂函数模型】模型1:若,则模型2:若,则代入则可化简为幂函数;【余弦函数模型】模型1:若,则模型2:若,则【正切函数模型】模型:若,则模型3:若,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com三、复合函数1.复合函数定义:两个或两个以上的基本初等函数经过嵌套式复合成一个函数叫做复合函数。复合函数形式:,令:,则转化为其中叫作中间变量.叫作内层函数,叫作外层函数.2.求复合函数单调性的步骤:①确定函数的定义域②将复合函数分解成两个基本函数分解成③分别确定这两个函数在定义域的单调性④再利用复合函数的”同增异减”来确定复合函数的单调性。在上的单调性如下表所示,简记为“同增异减”增增增增减减减增减【题型训练-刷真题】一、单选题1.(2022·全国·高考真题)已知函数的定义域为R,且,则()A.B.C.0D.1【答案】A【分析】法一:根据题意赋值即可知函数的一个周期为,求出函数一个周期中的的值,即可解出.【详解】[方法一]:赋值加性质因为,令可得,,所以,令可得,,即,所以函数为偶函数,令得,,即有,从而可知,二、考点分类精讲小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,故,即,所以函数的一个周期为.因为,,,,,所以一个周期内的.由于22除以6余4,所以.故选:A.[方法二]:【最优解】构造特殊函数由,联想到余弦函数和差化积公式,可设,则由方法一中知,解得,取,所以,则,所以符合条件,因此的周期,,且,所以,由于22除以6余4,所以.故选:A.【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.2.(2022·全国·高考真题)已知函数的定义域均为R,且.若的图像关于直线对称,,则()A.B.C.D.【答案】D【分析】根据对称性和已知条件得到,从而得到,,然后根据条件得到的值,再由题意得到从而得到的值即可求解.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】因为的图像关于直线对称,所以,因为,所以,即,因为,所以,代入得,即...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版).doc
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版).doc
免费
3下载
广东省茂名市信宜市2021-2022学年高一上学期期末数学试题 (1).pdf
广东省茂名市信宜市2021-2022学年高一上学期期末数学试题 (1).pdf
免费
6下载
2024年新高考数学复习资料重难点突破01  平面向量中最值、范围问题(解析版).docx
2024年新高考数学复习资料重难点突破01 平面向量中最值、范围问题(解析版).docx
免费
0下载
2024年新高考数学复习资料第32练 空间点、直线、平面间的位置关系(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第32练 空间点、直线、平面间的位置关系(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练109.docx
高中2024版考评特训卷·数学【新教材】考点练109.docx
免费
0下载
2017年高考数学试卷(理)(北京)(空白卷).pdf
2017年高考数学试卷(理)(北京)(空白卷).pdf
免费
0下载
高考数学复习  模拟预测卷01(新课标卷)(原卷版).docx
高考数学复习 模拟预测卷01(新课标卷)(原卷版).docx
免费
0下载
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
免费
0下载
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (五).doc
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (五).doc
免费
13下载
2022·微专题·小练习·数学·理科【统考版】专练37 .docx
2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
17下载
高中2024版《微专题》·数学(文)·统考版专练 22.docx
高中2024版《微专题》·数学(文)·统考版专练 22.docx
免费
0下载
2025年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
2025年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2019年高考数学试卷(浙江)(解析卷).doc
2019年高考数学试卷(浙江)(解析卷).doc
免费
0下载
2016年湖南高考理科数学试题及答案.docx
2016年湖南高考理科数学试题及答案.docx
免费
4下载
2009年高考数学试卷(理)(山东)(解析卷).doc
2009年高考数学试卷(理)(山东)(解析卷).doc
免费
0下载
2008年高考数学试卷(理)(全国卷Ⅰ)(空白卷) (1).pdf
2008年高考数学试卷(理)(全国卷Ⅰ)(空白卷) (1).pdf
免费
0下载
2017年江苏省高考数学试卷.doc
2017年江苏省高考数学试卷.doc
免费
0下载
2025年新高考数学复习资料重难点突破02 向量中的隐圆问题(五大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破02 向量中的隐圆问题(五大题型)(原卷版).docx
免费
0下载
2021年全国高考甲卷数学(理)试题(解析版).doc
2021年全国高考甲卷数学(理)试题(解析版).doc
免费
28下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料