2025年新高考数学复习资料思维拓展05 嵌套函数的零点问题(精讲 精练)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共14页】

2025年新高考数学复习资料思维拓展05 嵌套函数的零点问题(精讲 精练)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料思维拓展05 嵌套函数的零点问题(精讲 精练)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料思维拓展05 嵌套函数的零点问题(精讲 精练)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)思维拓展05嵌套函数的零点问题(精讲+精练)一、嵌套函数形式:形如二、解决嵌套函数零点个数的一般步骤(1)换元解套,转化为t=g(x)与y=f(t)的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.注:抓住两点:(1)转化换元;(2)充分利用函数的图象与性质.【典例1】(单选题)(23-24高二下·云南·阶段练习)设,函数,若函数恰有3个零点,则实数的取值范围为()A.B.C.D.【答案】D【分析】令,先考虑时,函数在上有2个零点,再考虑,分与两种情况,结合函数图象,得到不等式,求出答案.【详解】设,当时,,此时,由得,即,解得或,所以在上有2个零点,时,若,对称轴为,函数的大致图象如下:此时,即,则,小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com所以无解,则无零点,无零点,综上,此时只有两个零点,不符合题意,若,此时的大致图象如下:令,解得,显然令在上存在唯一负解,要使恰有3个零点,只需在上除或外不能再有其他解,即不能再有除或外的其他解,故,即,解得,所以.故选:D【点睛】思路点睛:复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.【题型训练-刷模拟】一、单选题1.(2024·辽宁·一模)已知函数,若关于的方程有五个不等的实数解,则的取值范围是()A.B.C.D.【答案】C【分析】首先判断函数在各段的单调性,即可得到的大致图象,令,则化为,分、、、、、六种情况讨论,结合函数图象即可得解.小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com【详解】由,当时,函数在上单调递减,且,,当时,当时,则,所以当时,当时,所以在上单调递减,在上单调递增,且,可得的大致图象如下所示:令,则化为,当时无解,则无解;当时,解得,由图可知有两解,即有两解;当时有一解且,又有一个解,即有一解;当时有两个解,即、,又有一个解,有两个解,所以共有三个解;当时有三个解,即,,,无解,有三个解,有两个解,所以共有五个解;当时有两个解,即,,有三个解,有两个解,所以共有五个解;综上可得的取值范围是.故选:C【点睛】关键点睛:本题解答的关键是数形结合,另外分类讨论需做到不重不漏.小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com2.(22-23高一上·上海·期末)已知,则方程的实数根个数不可能为()A.5个B.6个C.7个D.8个【答案】A【分析】作出的图象,令,由对勾函数的性质作出的图象,再对分类讨论,将问题转化为关于的方程(具体到每种类型时为常数)的解的个数问题.【详解】因为,当时,则在上单调递增,在上单调递减,又,,,当时,所以在上单调递增,在上单调递减,且,,,,,作出的图象,如图所示:令,由对勾函数的性质可知在,上单调递减,在,上单调递增,且,,则的图象如下所示:小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com①当时,令或,则关于的方程有两个实数解,关于的方程的方程也有两个实数解,即此时对应的个数为,(以下处理方法类似);②当时,令或或,此时对应的个数为6;③当时,令或或或,此时对应的个数为;④当时,或或或,此时对应的个数为;⑤当时,或或,此时对应的个数为;⑥当时,或,此时对应的个数为3;⑦当时,,此时对应的个数为2.综上可知,实数根个数不可能为5个.故选:A【点睛】关键点点睛:本题关键是作出的图象,再对分类讨论,将问题转化为关于的方程(具体到每种类型时为常数)的根的问题.3.(23-24高一下·湖南长沙·开学考试)已知函数,若函数与函数的零点相同,则的取值可能是()A.B.C.D.【答案】A【分析】设函数的零点为,由可得出,可求出的值,可得出,进而可得出,由此可知,方程无解或方...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2020年高考数学试卷(理)(新课标Ⅲ)(空白卷).doc
2020年高考数学试卷(理)(新课标Ⅲ)(空白卷).doc
免费
0下载
2022年高考数学试卷(理)(全国乙卷)(解析卷) (6).docx
2022年高考数学试卷(理)(全国乙卷)(解析卷) (6).docx
免费
0下载
2013年全国统一高考数学试卷(文科)(新课标ⅱ)(原卷版).doc
2013年全国统一高考数学试卷(文科)(新课标ⅱ)(原卷版).doc
免费
16下载
2024年新高考数学复习资料重难点突破04 立体几何表面积与体积(原卷版).docx
2024年新高考数学复习资料重难点突破04 立体几何表面积与体积(原卷版).docx
免费
0下载
2024年新高考数学复习资料重难点突破01 三角函数中有关ω的范围问题(解析版).docx
2024年新高考数学复习资料重难点突破01 三角函数中有关ω的范围问题(解析版).docx
免费
0下载
2014年高考数学真题(文科)(北京自主命题).doc
2014年高考数学真题(文科)(北京自主命题).doc
免费
13下载
高中数学高考数学10大专题技巧--专题01 五组秒杀公式模型(学生版).docx.doc
高中数学高考数学10大专题技巧--专题01 五组秒杀公式模型(学生版).docx.doc
免费
0下载
2024年高考数学试卷(天津)(解析卷).pdf
2024年高考数学试卷(天津)(解析卷).pdf
免费
0下载
2008年高考数学试卷(文)(浙江)(解析卷).doc
2008年高考数学试卷(文)(浙江)(解析卷).doc
免费
0下载
2022年高考数学试卷(理)(全国甲卷)(空白卷) (2).docx
2022年高考数学试卷(理)(全国甲卷)(空白卷) (2).docx
免费
0下载
2011年高考数学真题(理科)(陕西自主命题).doc
2011年高考数学真题(理科)(陕西自主命题).doc
免费
15下载
2025版新高考版 数学考点清单+题型清单04专题四导数及其应用1_4.3  导数的综合运用讲解册.pdf
2025版新高考版 数学考点清单+题型清单04专题四导数及其应用1_4.3 导数的综合运用讲解册.pdf
免费
28下载
1996年高考数学真题(文科)(安徽自主命题).doc
1996年高考数学真题(文科)(安徽自主命题).doc
免费
30下载
2024年新高考数学复习资料重难点突破03  数列与函数综合(原卷版).docx
2024年新高考数学复习资料重难点突破03 数列与函数综合(原卷版).docx
免费
0下载
2014年江苏高考数学试题及答案.doc
2014年江苏高考数学试题及答案.doc
免费
23下载
2024年新高考数学复习资料重难点突破03 同构(解析版).docx
2024年新高考数学复习资料重难点突破03 同构(解析版).docx
免费
0下载
2024届高考数学考向核心卷—文科 全国卷版 答题卡.pdf
2024届高考数学考向核心卷—文科 全国卷版 答题卡.pdf
免费
8下载
2000年湖北高考理科数学真题及答案.doc
2000年湖北高考理科数学真题及答案.doc
免费
12下载
2008年天津高考文科数学试题及答案(Word版).doc
2008年天津高考文科数学试题及答案(Word版).doc
免费
5下载
2024年新高考数学复习资料专题17 函数求参问题(含2021-2023高考真题)(原卷版).docx
2024年新高考数学复习资料专题17 函数求参问题(含2021-2023高考真题)(原卷版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群