2025年新高考数学复习资料专题05 数列求和(倒序相加法、分组求和法)(典型题型归类训练)(解析版).docx本文件免费下载 【共31页】

2025年新高考数学复习资料专题05 数列求和(倒序相加法、分组求和法)(典型题型归类训练)(解析版).docx
2025年新高考数学复习资料专题05 数列求和(倒序相加法、分组求和法)(典型题型归类训练)(解析版).docx
2025年新高考数学复习资料专题05 数列求和(倒序相加法、分组求和法)(典型题型归类训练)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题05数列求和(倒序相加法、分组求和法)(典型题型归类训练)目录一、必备秘籍..............................................1二、典型题型..............................................1题型一:倒序相加法.....................................1题型二:通项为型求和...........................5题型三:通项为型求和....................10三、专题05数列求和(倒序相加法、分组求和法)专项训练...16一、必备秘籍1、倒序相加法,即如果一个数列的前项中,距首末两项“等距离”的两项之和都相等,则可使用倒序相加法求数列的前项和.2、分组求和法2.1如果一个数列可写成的形式,而数列,是等差数列或等比数列或可转化为能够求和的数列,那么可用分组求和法.2.2如果一个数列可写成的形式,在求和时可以使用分组求和法.二、典型题型题型一:倒序相加法1.(2023高一·全国·竞赛)已知,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com其中是上的奇函数,则数列的通项公式为().A.B.C.D.【答案】C【分析】由奇函数的性质可得,从而得到,再利用倒序相加法计算可得.【详解】因为是上的奇函数,则,即,即,即,所以当,则,又,所以,所以,.故选:C.2.(2013高一·全国·竞赛)函数,则的值为().A.2012B.C.2013D.【答案】B【分析】由题意可得,再由倒序相加法求解即可.【详解】由可得:,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,,所以设,则两式相加可得:.故选:B.3.(2024高三·全国·专题练习)德国大数学家高斯年少成名,被誉为数学王子.他年幼时,在的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律而生成.此方法也称为高斯算法.现有函数,设数列满足,若存在使不等式成立,则的取值范围是.【答案】【分析】先计算出的图象关于点中心对称,利用倒序相加求出,从而得到,结合对勾函数的单调性得到,求出的取值范围.【详解】因为,所以的图象关于点中心对称.因为,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com两式相加得,所以.由,得,所以.令,则当时,单调递减;当时,单调递增.又,所以,所以,即的取值范围是.故答案为:【点睛】结论点睛:函数的对称性:若,则函数关于中心对称,若,则函数关于对称.4.(23-24高三下·浙江·开学考试)已知函数满足为的导函数,.若,则数列的前2023项和为.【答案】【分析】由,可得,从而得,然后利用倒序相加法从而可求解.【详解】由题意知,所以,即,又因为,所以,所以,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com将两式相加可得:.故答案为:.【点睛】关键点点睛:本题主要是对求导后得,主要能够找到的关系,再根据倒序相加法从而可求解.5.(23-24高二下·全国·课前预习)已知函数.(1)求证为定值;(2)若数列的通项公式为(为正整数,,,,),求数列的前项和;【答案】(1)证明见解析(2)【分析】(1)由函数的解析式得出的表达式,化简后可得为定值;(2)由于,可得,即,倒序相加可得.【详解】(1)证明:由于函数,则,所以.(2)由(1)可知,,则,其中为正整数,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即,且,所以,其中为正整数,,且,,①变化前项顺序后,可得:,②①②得:,因此.题型二:通项为型求和1.(23-24高二下·安徽六安·阶段练习)已知数列是正项等比数列,其前n项和为,且,.(1)求的通项公式;(2)求的前n项和为,并求满足的最小整数n.【答案】(1)(2),11【分析】(1)根据等比数列的通向公式,结合题意建立方程组,可得答案;(2)利用分组求和公式,结合等比数列以及等差数列求和公式,可得答案.【详解】(1)设的公比为,则,因为,所以,依题意可得,即,整理得,解得或(舍去),所以.(2)由(1)可知,故小学、初中、高中各种试卷真题知识归纳文案合同PPT等...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2025年新高考数学复习资料特训13 数列 解答题(六大题型)(原卷版).docx
2025年新高考数学复习资料特训13 数列 解答题(六大题型)(原卷版).docx
免费
0下载
2025年新高考数学复习资料考点20利用导数证明不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
2025年新高考数学复习资料考点20利用导数证明不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
免费
0下载
1996年高考数学真题(文科)(江西自主命题).doc
1996年高考数学真题(文科)(江西自主命题).doc
免费
1下载
高中2024版《微专题》·数学·新高考专练 15.docx
高中2024版《微专题》·数学·新高考专练 15.docx
免费
0下载
2021年高考数学真题(浙江自主命题)(解析版).doc
2021年高考数学真题(浙江自主命题)(解析版).doc
免费
7下载
2012年高考数学试卷(文)(重庆)(空白卷).doc
2012年高考数学试卷(文)(重庆)(空白卷).doc
免费
0下载
2024年新高考数学复习资料素养拓展19 等差数列中Sn的最值问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料素养拓展19 等差数列中Sn的最值问题(精讲+精练)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2019年高考真题数学【文】(山东卷)(含解析版).doc
2019年高考真题数学【文】(山东卷)(含解析版).doc
免费
5下载
2024年新高考数学复习资料微考点3-1 新高考中三角函数的图像与性质应用中的九大核心考点(原卷版).docx
2024年新高考数学复习资料微考点3-1 新高考中三角函数的图像与性质应用中的九大核心考点(原卷版).docx
免费
0下载
2009年高考数学真题(理科)(广东自主命题).doc
2009年高考数学真题(理科)(广东自主命题).doc
免费
26下载
2024年新高考数学复习资料专题02 不等式与复数(6大核心考点)(讲义)(原卷版).docx
2024年新高考数学复习资料专题02 不等式与复数(6大核心考点)(讲义)(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题09 数列求和(通项含绝对值数列求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题09 数列求和(通项含绝对值数列求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2025年新高考数学复习资料第九章 统计与成对数据的统计分析(测试)(解析版).docx
2025年新高考数学复习资料第九章 统计与成对数据的统计分析(测试)(解析版).docx
免费
0下载
2024年新高考数学复习资料通关秘籍02 平面向量(易错题+三大题型)(原卷版)-备战2024年高考数学抢分秘籍(新高考专用).docx
2024年新高考数学复习资料通关秘籍02 平面向量(易错题+三大题型)(原卷版)-备战2024年高考数学抢分秘籍(新高考专用).docx
免费
0下载
2024年新高考数学复习资料专题01 函数的概念及其表示(解析版).docx
2024年新高考数学复习资料专题01 函数的概念及其表示(解析版).docx
免费
0下载
高中数学·选择性必修·第二册·湘教版课时作业WORD  章末过关检测(三).docx
高中数学·选择性必修·第二册·湘教版课时作业WORD 章末过关检测(三).docx
免费
5下载
2024年新高考数学复习资料专题03 函数的概念与性质(原卷版).docx
2024年新高考数学复习资料专题03 函数的概念与性质(原卷版).docx
免费
0下载
高中数学·必修第二册·湘教版课时作业WORD  课时作业(二十三).docx
高中数学·必修第二册·湘教版课时作业WORD 课时作业(二十三).docx
免费
30下载
2004年贵州高考理科数学真题及答案.doc
2004年贵州高考理科数学真题及答案.doc
免费
27下载
2024版《微专题》·数学(文)·统考版专练 30.docx
2024版《微专题》·数学(文)·统考版专练 30.docx
免费
12下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档
确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群