2025年新高考数学复习资料创新点1 以高等数学知识为背景的导数问题(含解析).docx本文件免费下载 【共18页】

2025年新高考数学复习资料创新点1 以高等数学知识为背景的导数问题(含解析).docx
2025年新高考数学复习资料创新点1 以高等数学知识为背景的导数问题(含解析).docx
2025年新高考数学复习资料创新点1 以高等数学知识为背景的导数问题(含解析).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com以高等数学知识为背景的导数问题高考定位1.导数解答题与高等数学知识交汇命题,考查考生的知识迁移能力、现场学习能力与现场运用能力,逐渐成为命题的热点,难度较大,一般作为压轴题出现;2.常见的高等数学知识除了前面学习过的泰勒公式与洛必达法则、还有拉格朗日中值定理、罗尔中值定理、柯西中值定理、伯努利不等式、微积分、帕德近似等.【题型突破】题型一拉格朗日中值定理、罗尔中值定理、柯西中值定理例1(2024·宁模济拟)已知函数f(x)=lnx-ax2+(a∈R).(1)讨论函数f(x)的单调性;(2)若0<x1<x2,证明:对任意a∈(0,+∞),存在唯一的实数ξ∈(x1,x2),使得f′(ξ)=成立;(3)设an=,n∈N*,数列{an}的前n项和为Sn.证明:Sn>2ln(n+1).训练1罗尔中值定理是微分学中一条重要的定理,是三大微分中值定理之一,其他两个分别为:拉格朗日中值定理、柯西中值定理.罗尔定理描述如下:如果R上的函数f(x)满足以下条件:①在闭区间[a,b]上连续,②在开区间(a,b)内可导,③f(a)=f(b),则至少存在一个ξ∈(a,b),使得f′(ξ)=0.据此,解决以下问题:(1)证明方程4ax3+3bx2+2cx-(a+b+c)=0在(0,1)内至少有一个实根,其中a,b,c∈R;(2)已知函数f(x)=ex-ax2-(e-a-1)x-1,a∈R在区间(0,1)内有零点,求a的取值范围.题型二帕德近似小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com例2(2024·厦模门拟)帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法,在计算机数学中有着广泛的应用.已知函数f(x)在x=0处的[m,n]阶帕德近似定义为:R(x)=,且满足:f(0)=R(0),f′(0)=R′(0),f(2)(0)=R(2)(0),…,f(m+n)(0)=R(m+n)(0).其中f(2)(x)=[f′(x)]′,f(3)(x)=[f(2)(x)]′,…,f(m+n)(x)=[f(m+n-1)(x)]′.已知f(x)=ln(x+1)在x=0处的[2,2]阶帕德近似为R(x)=.(1)求实数a,b的值;(2)设h(x)=f(x)-R(x),证明:xh(x)≥0;(3)已知x1,x2,x3是方程lnx=λ的三个不等实根,求实数λ的取值范围,并证明:>-1.训练2(2024·模菏泽拟)帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m,n,函数f(x)在x=0处的[m,n]阶帕德近似定义为:R(x)=,且满足:f(0)=R(0),f′(0)=R′(0),f″(0)=R″(0),…,f(m+n)(0)=R(m+n)(0)(注:f″(x)=[f′(x)]′,f(x)=[f″(x)]′,…,f(n)(x)为f(n-1)(x)的导数).已知f(x)=ln(x+1)在x=0处的[-1,1]阶帕德近似为R(x)=.(1)求实数a,b的值;(2)比较f(x)与R(x)的大小;(3)若h(x)=-f(x)在(0,+∞)上存在极值,求m的取值范围.题型三微积分、洛必达法则例3(2024·湖北二模)微积分的创立是数学发展中的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段.对于函数g(x)=(x>0),g(x)在区间[a,b]上的图象连续不断,从几何上看,定积分dx便是由直线x=a,x=b,y=0和曲线y=所围成的区域(称为曲边梯形ABQP)的面积,根据微积分基本定理可得dx=lnb-lna,因为曲边梯形ABQP的面积小于梯形ABQP的面积,即S曲边梯形ABQP<S梯形ABQP,代入数据,进一步可以小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com推导出不等式:>.(1)请仿照这种根据面积关系证明不等式的方法,证明:<;(2)已知函数f(x)=ax2+bx+xlnx,其中a,b∈R.①证明:对任意两个不相等的正数x1,x2,曲线y=f(x)在(x1,f(x1))和(x2,f(x2))处的切线均不重合;②当b=-1时,若不等式f(x)≥2sin(x-1)恒成立,求实数a的取值范围.训练3①在微积分中,求极限有一种重要的数学工具——洛必达法则,法则中有结论:若函数f(x),g(x)的导函数分别为f′(x),g′(x),且f(x)=g(x)=0,则=.②设a>0,k是大于1的正整数,若函数f(x)满足:对任意x∈[0,a],均有f(x)≥f成立,且f(x)=0,则称函数f(x)为区间[0,a]上的k阶无穷递降函数.结合以上两个信息,回答下列问题:(1)试判断f(x)=x3-3x是否为区间[0,3]上的2阶无穷递降函...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
免费
0下载
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
免费
0下载
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
免费
0下载
2023年新课标全国Ⅰ卷数学真题.docx
2023年新课标全国Ⅰ卷数学真题.docx
免费
0下载
2023高考真题 新高考II卷数学-解析 .pdf
2023高考真题 新高考II卷数学-解析 .pdf
免费
12下载
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
免费
0下载
2018年上海市高考数学试卷(1)往年高考真题.doc
2018年上海市高考数学试卷(1)往年高考真题.doc
免费
0下载
2025年新高考数学复习资料提优点4 必要性探路.pptx
2025年新高考数学复习资料提优点4 必要性探路.pptx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
免费
0下载
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
免费
0下载
2014年浙江省高考数学试卷(理科).doc
2014年浙江省高考数学试卷(理科).doc
免费
1下载
专题06 平面向量(15区新题速递)(解析版).docx
专题06 平面向量(15区新题速递)(解析版).docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
2012年高考数学试卷(理)(上海)(解析卷).doc
2012年高考数学试卷(理)(上海)(解析卷).doc
免费
0下载
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群