2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx本文件免费下载 【共36页】

2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题突破卷14累加、累乘、构造法求数列通项公式题型一:累加求数列通项公式1.南宋数学家杨辉的重要著作《详解九章算法》中的“垛积术”问题介绍了高阶等差数列.以高阶等差数列中的二阶等差数列为例,其特点是从数列中的第二项开始,每一项与前一项的差构成等差数列.若某个二阶等差数列的前4项为,则该数列的第18项为()A.188B.208C.229D.251【答案】A【分析】记该二阶等差数列为,,计算出,利用累加法结合等差数列求和能求出的值.【详解】记该二阶等差数列为,且该数列满足,记小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,由题意可知,数列为等差数列,且,所以等差数列的公差为,所以,所以,则,所以,故选:A2.已知数列的前项和为()A.276B.272C.268D.266【答案】A【分析】令得,当时,结合题干作差得,从而利用累加法求解即可.【详解】,又,当时,,解得;当时,,作差得,.故选:A小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.设是公差为3的等差数列,且,若,则()A.21B.25C.27D.31【答案】D【分析】由,得,从而可得,进而可求解.【详解】由,得,则,从而.故选:D4.已知数列对任意均有.若,则()A.530B.531C.578D.579【答案】C【分析】根据等差数列可得,再利用累加法求.【详解】因为,可知数列是以首项,公差的等差数列,所以,又因为,即,可得,累加可得,则,所以.故选:C.5.已知数列满足,,则()A.1B.2C.3D.4小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】D【分析】由题意可得,由累加法可得,进而可求.【详解】由题意可得,则可得,,,将以上等式左右两边分别相加得,,即,又,所以.故选:D.6.在数列中,,,则()A.43B.46C.37D.36【答案】C【分析】由递推公式用累加法公式求出,再求即可.【详解】法一:由题得,所以.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com法二:由题,,所以.故选:C.7.已知数列满足:,,且,则数列前n项的和为()A.B.C.D.【答案】B【分析】由叠加法求出数列{an)通项公式,再代入,求出数列{bn)通项公式,再由列项相消法求出.【详解】由得,,,…,,,叠加得,由题可知也适合上式,故;所以,则数列{bn)前n项的和.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:B.8.若数列满足,,且对任意的都有,则()A.B.C.D.【答案】C【分析】令,由题意可证得数列是等差数列,从而求得,再利用累加法求得,进而利用裂项相消法求即可得解.【详解】因为对于都有,则,令,所以,又,所以数列是以为首项,2为公差的等差数列,所以,即,则,累加得,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则,所以.故选:C.9.已知数列满足,,且,若表示不超过的最大整数,则()A.2015B.2016C.2017D.2018【答案】B【分析】先由累加法求出,进而求得,再用裂项相消法求解即可.【详解】由可得,又,故数列是以12为首项,8为公差的等差数列,则,,,,,,故当时,,则时,,又适合上式,故,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则,所以,又,所以.故选:B.10.已知数列的前项和为,,,且是,的等差中项,则使得成立的最小的的值为()A.8B.9C.10D.11【答案】D【分析】由题意得到是等比数列,进而得到,利用错位相减法求出,构造函数,并利用导数判断函数的单调性,即可求出符合条件的的最小值.【详解】是,的等差中项,,故,而,,故数列是首项为1,公比为2的等比数列,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,记,则,,两式相减可得,,即,令,即,设,则,,,在单调递减,是递减数列,当时,,当时,,使得成立的最小的的值为11.故选:D.题型二:累乘求数列通项公式11.已知数列对任意满足,则()A.B.C.D.小学、...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(空白卷) (9).pdf
免费
0下载
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
2024年新高考数学复习资料专题03 一网打尽指对幂等函数值比较大小问题 (练习)(解析版).docx
免费
0下载
2016年海南省高考数学试题及答案(文科).doc
2016年海南省高考数学试题及答案(文科).doc
免费
4下载
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
2025年新高考数学复习资料第01讲 随机抽样、统计图表、用样本估计总体(八大题型)(练习)(解析版).docx
免费
0下载
2008年高考数学试卷(理)(北京)(空白卷).doc
2008年高考数学试卷(理)(北京)(空白卷).doc
免费
0下载
1997年高考数学真题(文科)(湖南自主命题).doc
1997年高考数学真题(文科)(湖南自主命题).doc
免费
17下载
2018年高考数学真题(文科)(天津自主命题).doc
2018年高考数学真题(文科)(天津自主命题).doc
免费
23下载
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
精品解析:上海市闵行区2023届高三二模数学试题(解析版).docx
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第7章 §7.7 向量法求空间角.docx
免费
0下载
2006年重庆高考文科数学真题及答案.doc
2006年重庆高考文科数学真题及答案.doc
免费
3下载
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
2018年高考数学试卷(理)(新课标Ⅱ)(空白卷) (10).pdf
免费
0下载
2019年高考数学真题(理科)(北京自主命题).docx
2019年高考数学真题(理科)(北京自主命题).docx
免费
5下载
2014年高考数学试卷(文)(广东)(空白卷).doc
2014年高考数学试卷(文)(广东)(空白卷).doc
免费
0下载
2016年上海市闸北区高考数学二模试卷(文科).doc
2016年上海市闸北区高考数学二模试卷(文科).doc
免费
0下载
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
2021届江苏省连云港市高三下学期高考考前一模数学试题(原卷版).doc
免费
0下载
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
2015年高考数学真题(理科)(广东自主命题)(原卷版).doc
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】3.1.docx
免费
20下载
2017年上海市奉贤区高考数学一模试卷.doc
2017年上海市奉贤区高考数学一模试卷.doc
免费
0下载
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
第01讲+数列的基本知识与概念(六大题型)(课件)-2024年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第6讲 随机事件的概率(含解析).docx
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群