2025年新高考数学复习资料专题04 基本不等式(思维导图+知识清单+核心素养分析+方法归纳)(原卷版).docx本文件免费下载 【共5页】

2025年新高考数学复习资料专题04 基本不等式(思维导图+知识清单+核心素养分析+方法归纳)(原卷版).docx
2025年新高考数学复习资料专题04 基本不等式(思维导图+知识清单+核心素养分析+方法归纳)(原卷版).docx
2025年新高考数学复习资料专题04 基本不等式(思维导图+知识清单+核心素养分析+方法归纳)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题04基本不等式目录01思维导图02知识清单03核心素养分析04方法归纳一、基本不等式1.基本不等式:≤(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a=b时,等号成立.(3)其中叫做正数a,b的算术平均数,叫做正数a,b的几何平均数.2.基本不等式的证明小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1).代数证法(2).几何证法如图,AB是圆的直径,点C是AB上一点,AC=a,BC=b.过点C作垂直于AB的弦DE,连接AD,BD.可证△ACD~DCB,△因而CD=√ab.由于CD小于或等于圆的半径,用不等式表示为显然,当且仅当点C与圆心重合,即当a=b时,上述不等式的等号成立.例已知a,b,c都是正数,证明:证明:二、几个重要不等式小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.几个重要的不等式(1)a2+b2≥2ab(a,b∈R).(2)+≥2(a,b同号).(3)ab≤2(a,b∈R).(4)≥2(a,b∈R).以上不等式等号成立的条件均为a=b.三、最值定理(1)已知x,y都是正数,如果积xy等于定值P,那么当x=y时,和x+y有最小值2.(2)已知x,y都是正数,如果和x+y等于定值S,那么当x=y时,积xy有最大值S2.注意:利用不等式求最值应满足三个条件一正、二定、三相等.“”理解基本不等式。结合具体实例,能用基本不等式解决简单的求最大值或最小值的问题。利用基本不等式求最值是高考的重点内容,在选择题、填空题中常常出现。重点提升数学抽象、逻辑推理和数学运算素养.一、利用基本不等式求最值方法方法1配凑法例1(1)(2022·长沙模拟)设0<x<,则函数y=4x(3-2x)的最大值为()A.B.4C.D.9答案C解析y=4x(3-2x)=2·2x·(3-2x)≤2·2=.当且仅当2x=3-2x,即x=时取等号,当∴x=时,ymax=.(2)若x<,则f(x)=3x+1+有()A.最大值0B.最小值9C.最大值-3D.最小值-3答案C解析 x<,∴3x-2<0,f(x)=3x-2++3=-+3≤-2+3=-3.当且仅当2-3x=,即x=-时取=.“”(3)(2022·天津模拟)函数y=(x>-1)的最小值为________.答案9解析因为x>-1,则x+1>0,所以y=小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com==(x+1)++5≥2+5=9,当且仅当x+1=,即x=1时等号成立,所以函数的最小值为9.方法2常数代换法例2(2022·重庆模拟)已知a>0,b>0,且a+b=2,则+的最小值是()A.1B.2C.D.答案C解析因为a>0,b>0,且a+b=2,所以=1,所以+=(a+b)=≥×=,当且仅当a=,b=时,等号成立.方法3消元法例3(2022·烟台模拟)已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为_____.答案6解析方法一(换元消元法)由已知得9-(x+3y)=·x·3y≤·2,当且仅当x=3y,即x=3,y=1时取等号.即(x+3y)2+12(x+3y)-108≥0,令x+3y=t,则t>0且t2+12t-108≥0,得t≥6,即x+3y的最小值为6.方法二(代入消元法)由x+3y+xy=9,得x=,所以x+3y=+3y====3(1+y)+-6≥2-6=12-6=6,当且仅当3(1+y)=,即y=1,x=3时取等号,所以x+3y的最小值为6.延伸探究本例条件不变,求xy的最大值.解方法一9-xy=x+3y≥2,∴9-xy≥2,令=t,∴t>0,∴9-t2≥2t,即t2+2t-9≤0,解得0<t≤,≤,∴∴xy≤3,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当且仅当x=3y,即x=3,y=1时取等号,∴xy的最大值为3.方法二 x=,∴x·y=·y===-3(y+1)-+15≤-2+15=3.当且仅当3(y+1)=,即y=1,x=3时取等号.∴xy的最大值为3.思维升华(1)前提:一正二定三相等.“”“”“”(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.方法4换元法当所求最值的代数式中的变量关系复杂,变形方向难寻我时,可通过换元的方式发现新元的特点,进而利用基本不等式求得最值.例4答案方法5多次应用基本不等式化简求最值连续应用基本不等式求最值时,要注意各不等式取...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群