小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第21讲利用导数研究函数的极值和最值1、函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.2、函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.3、常用结论1.若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.2.若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.3.若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.1、【2022年全国甲卷】当x=1时,函数f(x)=alnx+bx取得最大值−2,则f'(2)=¿()A.−1B.−12C.12D.1【答案】B【解析】因为函数f(x)定义域为(0,+∞),所以依题可知,f(1)=−2,f'(1)=0,而f'(x)=ax−bx2,所以b=−2,a−b=0,即a=−2,b=−2,所以f'(x)=−2x+2x2,因此函数f(x)在(0,1)上递增,在(1,+∞)上递减,x=1时取最大值,满足题意,即有f'(2)=−1+12=−12.故选:B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2、【2022年新高考1卷】(多选)已知函数f(x)=x3−x+1,则()A.f(x)有两个极值点B.f(x)有三个零点C.点(0,1)是曲线y=f(x)的对称中心D.直线y=2x是曲线y=f(x)的切线【答案】AC【解析】由题,f'(x)=3x2−1,令f'(x)>0得x>❑√33或x<−❑√33,令f'(x)<0得−❑√33<x<❑√33,所以f(x)在(−❑√33,❑√33)上单调递减,在(−∞,−❑√33),(❑√33,+∞)上单调递增,所以x=±❑√33是极值点,故A正确;因f(−❑√33)=1+2❑√39>0,f(❑√33)=1−2❑√39>0,f(−2)=−5<0,所以,函数f(x)在(−∞,−❑√33)上有一个零点,当x≥❑√33时,f(x)≥f(❑√33)>0,即函数f(x)在(❑√33,+∞)上无零点,综上所述,函数f(x)有一个零点,故B错误;令ℎ(x)=x3−x,该函数的定义域为R,ℎ(−x)=(−x)3−(−x)=−x3+x=−ℎ(x),则ℎ(x)是奇函数,(0,0)是ℎ(x)的对称中心,将ℎ(x)的图象向上移动一个单位得到f(x)的图象,所以点(0,1)是曲线y=f(x)的对称中心,故C正确;令f'(x)=3x2−1=2,可得x=±1,又f(1)=f(−1)=1,当切点为(1,1)时,切线方程为y=2x−1,当切点为(−1,1)时,切线方程为y=2x+3,故D错误.故选:AC.3、【2022年全国乙卷】已知x=x1和x=x2分别是函数f(x)=2ax−ex2(a>0且a≠1)的极小值点和极小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com大值点.若x1<x2,则a的取值范围是____________.【答案】(1e,1)【解析】解:f'(x)=2lna⋅ax−2ex,因为x1,x2分别是函数f(x)=2ax−ex2的极小值点和极大值点,所以函数f(x)在(−∞,x1)和(x2,+∞)上递减,在(x1,x2)上递增,所以当x∈(−∞,x1)∪(x2,+∞)时,f'(x)<0,当x∈(x1,x2)时,f'(x)>0,若a>1时,当x<0时,2lna⋅ax>0,2ex<0,则此时f'(x)>0,与前面矛盾,故a>1不符合题意,若0<a<1时,则方程2lna⋅ax−2ex=0的两个根为x1,x2,即方程lna⋅ax=ex的两个根为x1,x2,即函数y=lna⋅ax与函数y=ex的图象有两个不同的交点, 0<a<1,∴函数y=ax的图象是单调递减的指数函数,又 lna<0,∴y=lna⋅ax的图象由指数函数y=ax向下关于x轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的|lna|倍得到,如图所示:设过原点且与函数y=g(x)的图象相切的直线的切点为(x0,lna⋅ax0),则切线的斜率为g'(x0)=ln2a⋅ax0,故切线方程为y−lna⋅ax0=ln2a⋅ax0(x−x0),...