小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第23讲导数中的构造问题(微专题)题型一构造函数的比较大小例1、(2023·广东·校联考模拟预测)已知,,,则下列结论中,正确的是()A.B.C.D.【答案】A【解析】比较b、c只需比较,设,则,当时,,即函数在上单调递减,所以,即,所以,所以.比较a、b只需比较,设,则,因为单调递减,且,所以当时,,所以在上单调递减.即,,所以,即.综上,.故选:A变式1、(东莞市高三期末试题)已知实数a,b满足,则下列选项中一定正确的是()A.B.C.D.【答案】B【解析】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】令,则在定义域内单调递增, ,即,∴,A错误,B正确;令,则,且,∴,此时,C错误;令,则,且,∴,此时,D错误;故选:B.变式2、(2023·江苏南京·校考一模)已知是自然对数的底数,设,则()A.B.C.D.【答案】A【分析】首先设,利用导数判断函数的单调性,比较的大小,设利用导数判断,放缩,再设函数,利用导数判断单调性,得,再比较的大小,即可得到结果.【详解】设,,当时,,函数单调递增,当时,,函数单调递减,,时,,即,设,,时,,函数单调递减,时,,函数单调递增,所以小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,函数取得最小值,,即恒成立,即,令,,时,,单调递减,时,,单调递增,时,函数取得最小值,即,得:,那么,即,即,综上可知.故选:A.变式3、(清远市高三期末试题)(多选题)设,,,,则()A.B.C.D.【答案】ACD【解析】【详解】解:,,,,对于A,设,则,令,则恒成立,所以在上单调递增,则恒成立,所以在上单调递小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com增,则,即,所以,故A正确;对于B,设,则,故在上单调递增,则,整理得,所以,故B不正确;对于D,设,则,当时,,所以在上单调递增,所以有,即,所以,则,故D正确;由前面可知,所以,故C正确.故选:ACD.变式4、(2022·福建省漳州第一中学模拟预测)设,,,则()A.B.C.D.【答案】D【解析】设则,,,在上单调递增,,即,,,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,又,所以.设,则,所以在上单调递增,所以,所以,,所以,,,又,故,综上:,故选:D题型二构造函数的研究不等式问题例2、(2023·江苏连云港·统考模拟预测)(多选题)利用“”可得到许多与n(且)有关的结论,则正确的是()A.B.C.D.【答案】ABD【分析】先证明出,当且仅当时,等号成立,A选项,令,得到,累加后得到A正确;B选项,推导出,,当且仅当时等号成立,令,可得,累加后得到B正确;C选项,推导出,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com累加后得到C错误;D选项,将中的替换为,推导出,故,当且仅当时,等号成立,累加后得到D正确.【详解】令,则,当时,,当时,,故在上单调递减,在上单调递增,故在处取得极小值,也时最小值,,故,当且仅当时,等号成立,A选项,令,所以,故,其中,所以,A正确;B选项,将中的替换为,可得,,当且仅当时等号成立,令,可得,所以,故,其中小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,B正确;C选项,将中的替换为,显然,则,故,故,C错误;D选项,将中的替换为,其中,,则,则,故,当且仅当时,等号成立,则,D正确.故选:ABD.变式1、(2022·湖北·襄阳五中高三开学考试)设是定义在R上的连续的函数的导函数,(e为自然对数的底数),且,则不等式的解集为()A.B.C.D.【答案】C【解析】设,则, ,∴,函数在R上单调递增,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又,∴,由,可得,即,又函数在R上单调递增,所以,即不等式的解集为.故选:C.变式2、(2022·山东德州·高三期末)设函数在上的导函数为,若,,,则不等式的解集为()A.B.C.D.【答案】C【解析...