小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com技巧04结构不良问题解题策略【目】录...........................................................................................................................................1...........................................................................................................................................1...........................................................................................................................................2...........................................................................................................................................4考点一:三角函数与解三角形..............................................................................................................................4考点二:数列........................................................................................................................................................6考点三:立体几何.................................................................................................................................................7考点四:函数与导数...........................................................................................................................................10考点五:圆锥曲线...............................................................................................................................................11结构不良问题是高考重点考查的内容之一,命题形式多种多样,主要以解答题为主,应适度关注.1、灵活选用条件,牵手解题经验“”对于试题中提供的选择条件,应该逐一分析条件考查的知识内容,并结合自身的知识体系,尽量选择比较有把握的知识内容,纳入自己熟悉的知识体系中.因此,条件的初始判断分析还是比较重要的,良好的开端是成功的一半嘛!2、正确辨析题设,开展合理验证对于条件组合类问题,初始状态更加的不确定,最关键的步骤在于对选项的条件进行组合后验证,应从多个角度,考虑多种可能性的组合,这个分析过程对思维的系统性、灵活性、深刻性和创造性的考查提出了新的要求,所以需要更加细致地完成这个验证过程.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3、全面审视信息,活学结合活用“”“”数学必备知识是学科理论的基本内容,是考查学生能力与素养的有效途径和载体,更是今后生活和学习的基础.数学基础知识是数学核心素养的外显表现,是发展数学核心素养的有效载体.活的知识才是“”能力,活的能力才是素养.我们在学习中要重视对教材内容的理解与掌握,夯实必备知识,并在此基础“”上活学活用,提高思维的灵活性,才能更好地应对高考数学中考查的开放性、探究性问题.1.(2023•北京)已知函数,,.(Ⅰ)若,求的值;(Ⅱ)若在,上单调递增,且,再从条件①、条件②、条件③这三个条件中选择一个作为已知,求、的值.条件①:;条件②:;条件③:在,上单调递减.注:如果选择多个条件分别解答,按第一个解答计分.2.(2022•北京)如图,在三棱柱中,侧面为正方形,平面平面,,,分别为,的中点.(Ⅰ)求证:平面;(Ⅱ)再从条件①、条件②这两个条件中选择一个作为已知,求直线与平面所成角的正弦值.条件①:;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(2022•新高考Ⅱ)已知双曲线的右焦点为,渐近线方程为.(1)求的方程;(2)过的直线与的两条渐近线分别交于,两点,点,,,在上,且,.过且斜率为的直线与过且斜率为的直线交于点.从下面①②③中选取两个作为条件,证明另外一个成立.①在上;②;③.注:若选择不同的组...