2024年新高考数学复习资料思想03 运用函数与方程的思想方法解题(4大题型)(练习)(解析版).docx本文件免费下载 【共29页】

2024年新高考数学复习资料思想03 运用函数与方程的思想方法解题(4大题型)(练习)(解析版).docx
2024年新高考数学复习资料思想03 运用函数与方程的思想方法解题(4大题型)(练习)(解析版).docx
2024年新高考数学复习资料思想03 运用函数与方程的思想方法解题(4大题型)(练习)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com思想03运用函数与方程的思想方法解题目录01运用函数的思想研究问题................................................................................................................102运用方程的思想研究问题................................................................................................................503运用函数与方程的思想研究不等式问题........................................................................................1204运用函数与方程的思想研究其他问题............................................................................................1701运用函数的思想研究问题1.(2024·北京延庆·统考一模)已知函数其中.(1)当时,求曲线在原点处的切线方程;(2)若函数在上存在最大值和最小值,求a的取值范围.【解析】(1).所以切线的斜率;又小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以曲线在原点处的切线方程为:.(2)当时,解得则时随的变化情况如下表:00递增递减所以在上单调递增,在上单调递减,所以的最大值为,若存在最小值,则时,恒成立,即,所以即在恒成立,所以.又因为,所以,则.当时,解得则时随的变化情况如下表:0小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com0递减递增所以在上单调递减,在上单调递增,所以的最小值为,若存在最大值,则时,恒成立,即,所以即在恒成立,所以.又因为,所以,则.综上所述,的取值范围为.2.(2024·江西上饶·统考二模)已知函数.(是自然对数的底数)(1)求的单调区间;(2)记,,试讨论在上的零点个数.(参考数据:)【解析】(1),定义域为.,由,解得,可得,解得,由,解得,可得,解得.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴的单调递增区间为,单调递减区间为.(2)由已知,∴,令,则. ,∴当时,;当时,,∴在上单调递增,在上单调递减,即在上单调递增,在上单调递减.,,.①当时,即时,,∴,使得,∴当时,;当时,,∴在上单调递增,上单调递减. ,∴.又 ,∴由零点存在性定理可得,此时在上仅有一个零点.②若时,,又 在上单调递增,在上单调递减,而,∴,,使得,,且当、时,;当时,.∴在和上单调递减,在上单调递增. ,∴, ,∴,又 ,由零点存在性定理可得,在和内各有一个零点,即此时在小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com上有两个零点.综上所述,当时,在上仅有一个零点;当时,在上有两个零点.3.(2024·四川南充·高三四川省阆中东风中学校校考阶段练习)已知函数,其中为常数,且.(1)当时,求的单调区间;(2)若在处取得极值,且在的最大值为1,求的值.【解析】(1),,令,得或1,则列表如下:1+0_0+增极大值减极小值增所以在和上单调递增,在上单调递减.(2) ,令,,,因为在处取得极值,所以,①时,在上单调递增,在上单调递减,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以在区间上的最大值为,令,解得;②当,;(i)当时,在上单调递增,上单调递减,上单调递增,所以最大值1可能在或处取得,而,∴,∴,(ii)当时,在区间上单调递增;上单调递减,上单调递增,所以最大值1可能在或处取得而,所以,解得,与矛盾;(iii)当时,在区间上单调递增,在单调递减,所以最大值1可能在处取得,而,矛盾,综上所述,或.02运用方程的思想研究问题4.已知函数,,若总存在两条不同的直线与函数,图象均相切,则实数a的取值范围为()A.B.C.D.【答案】B【解析】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com设函数上的切点坐标为,且,函数上的切点坐标为,且,又,则公切线的斜率,则,所以,则公切线方程为,即,代入得:,则,整理得,若总存在两条不同的直线与函数,图象均相切,则方程有两个不同的实根,设,则,令得,当时...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群