2024年新高考数学复习资料重难点突破02 导数中的构造问题(解析版).docx本文件免费下载 【共23页】

2024年新高考数学复习资料重难点突破02 导数中的构造问题(解析版).docx
2024年新高考数学复习资料重难点突破02 导数中的构造问题(解析版).docx
2024年新高考数学复习资料重难点突破02 导数中的构造问题(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点突破02导数中的构造问题(1)构造函数:当条件中含“+”时优先考虑;当条件中含“-”时优先考虑.(2)构造函数:条件中含“”的形式;构造函数:条件中含“”的形式.(3)构造函数:条件中含“”的形式.(4)构造函数:条件中含“”的形式.1.(2023春•资溪县校级期末)已知函数是定义域为的奇函数,是其导函数,(2),当时,,则不等式的解集是A.,,B.,,C.D.,,【解答】解:令,则,当时,,故,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以在上单调递减,又,所以即(2),因为函数是定义域为的奇函数,所以,即为定义域为的偶函数,所以由(2)可得(2),所以,即或,即不等式的解集是,,,故选:.2.(2022春•赣州期末)已知定义在上的函数,其导函数为.若,且当时,,则不等式的解集为A.B.,C.D.【解答】解:设,因为,所以,所以,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com即为奇函数,而,则在上单调递增,,即,即,所以的范围为.故选:.3.(2021春•海安市校级期中)设定义在,上的函数的导函数,若,则A.(1)(3)B.(1)(3)C.(3)(1)D.(3)(1)【解答】解:令,,因为,所以,所以在,上单调递减,所以(3)(1),即,所以(1)(3).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:.4.(2023春•鄄城县校级月考)已知可导函数的导函数为,若对任意的,都有,且,则不等式的解集为A.B.C.D.【解答】解:构造函数,因为对任意的,都有,则,所以函数在上单调递减,因为,所以.由,得,即,所以.故选:.5.(2023春•泉州期末)设偶函数在上的导函数为,当时,有,则下列结论一定正确的是A.(1)B.(2)(1)C.D.【解答】解:当时,有,即,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com令,则,即在上单调递增,又为偶函数,则,即为偶函数,故(2)(1),即,即,故错误,正确;由(2)(1),即,即,错误;而(1),故,则不一定成立,错误,故选:.6.(2023春•上高县校级期末)已知若为定义在上的偶函数,且当,时,,则不等式的解集为A.B.C.D.【解答】解:根据题意,设,则,若为偶函数,则,即可得函数为偶函数,又由当,时,,则单调递增,则在,上递减,则,解可得,即不等式的解集为,;故选:.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com7.(2023春•东莞市期末)已知函数的定义域为,其导函数满足,则不等式的解集为A.B.C.D.【解答】解:由题意知,当时,,设,则,所以在上单调递减,不等式等价于,即为,所以,解得.故选:.8.(2023春•西青区期末)已知可导函数的导函数为,,若对任意的,都有,则不等式的解集为A.B.C.D.【解答】解:令,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,因为对任意的,都有,所以对任意的,都有,所以对任意的,都有,单调递增,不等式可化为,进而可得,所以,所以,故选:.9.(2023春•嘉陵区校级期中)已知函数的导函数是,对任意的,,若,则的解集是A.B.C.D.【解答】解:令,则,,,则单调递减,又,,,得.的解集是.故选:.10.(2023春•蒲城县校级期中)设定义在上的函数的导函数为,若小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,,则不等式(其中为自然对数的底数)的解集为A.B.C.D.,,【解答】解:设,则,,,又,,在上单调递增,又,的解集为,即不等式的解集为,故选:.11.(2023春•龙岩期末),,,则不等式的解集为A.B.C.D.【解答】解:令,则,①小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,因为,所以,设,由①知,所以,所以,二次函数对称轴为,且(2),在上单调递增,在,上单调递减,不等式可化为,即,所以.故选:.12.(2023春•渭滨区期末)已知函数为定义在...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料