2024年新高考数学复习资料【专项精练】第13 课 导数与函数的单调性-2024年新高考数学分层专项精练(解析版).docx本文件免费下载 【共15页】

2024年新高考数学复习资料【专项精练】第13 课 导数与函数的单调性-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第13 课 导数与函数的单调性-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第13 课 导数与函数的单调性-2024年新高考数学分层专项精练(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第13课导数与函数的单调性(分层专项精练)【一层练基础】一、单选题1.(2023春·广东东莞·高二东莞实验中学校考阶段练习)对任意的,当时,恒成立,则实数的取值范围是()A.B.C.D.【答案】C【分析】将不等式等价变形,构造函数,再借助函数单调性、最值求解作答.【详解】依题意,,令,,则对任意的,当时,,即有函数在上单调递减,因此,,,而,则,所以实数的取值范围是.故选:C2.(2023·全国·高三专题练习)已知是定义在R上的偶函数,当时,,则不等式的解集是()A.B.C.D.【答案】D小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】利用导函数证明在单调递增,再根据奇偶性和单调性解不等式即可.【详解】当时,,因为,所以恒成立,所以在单调递增,又因为是定义在R上的偶函数,所以在单调递减,所以,所以由可得,解得,故选:D.3.(2023春·河南开封·高二校考期中)若函数在区间上单调递增,则的取值范围是()A.B.C.D.【答案】B【分析】先求导数,利用在上恒成立,分离参数进行求解.【详解】,因为在区间上单调递增,所以在上恒成立,即在上恒成立,因为二次函数的图象的对称轴为,且开口向上所以的最小值为1,所以.故选:B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com4.(2023春·重庆北碚·高三西南大学附中校考期中)已知函数为偶函数,定义域为R,当时,,则不等式的解集为()A.B.C.D.【答案】B【分析】根据导函数小于0,得到偶函数在上单调递减,从而对不等式变形后得到,解出解集.【详解】因为当时,,故偶函数在上单调递减,故变形为:,所以,显然不满足不等式,解得:,故.故选:B二、多选题5.(2023·广东汕头·统考三模)设函数的导函数为,则()A.B.是函数的极值点C.存在两个零点D.在(1,+∞)上单调递增【答案】AD【分析】首先求函数的导数,利用导数和函数的关系,即可判断选项.【详解】,所以函数在上单调递增,所以函数不存在极值点,故B小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com错误,D正确;,故A正确;,得,中,,所以恒成立,即方程只有一个实数根,即,故C错误.故选:AD6.(2023·全国·高三专题练习)已知函数,则()A.在单调递增B.有两个零点C.曲线在点处切线的斜率为D.是奇函数【答案】AC【分析】利用导数研究函数的单调性,结合单调性即可判断零点个数,根据导数的几何意义,以及奇偶性的定义,对每个选项进行逐一分析,即可判断和选择.【详解】对A:,定义域为,则,由都在单调递增,故也在单调递增,又,故当时,,单调递减;当时,,单调递增;故A正确;对B:由A知,在单调递减,在单调递增,又,故只有一个零点,B错误;对C:,根据导数几何意义可知,C正确;对D:定义域为,不关于原点对称,故是非奇非偶函数,D错误.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:AC.三、填空题7.(2023春·河北石家庄·高二河北新乐市第一中学校考阶段练习)已知函数,则不等式的解集是.【答案】【分析】由定义可判断函数的奇偶性,求导可得其单调性,从而可求解不等式.【详解】因为函数,所以,即函数为奇函数,且,则函数为增函数,则不等式等价于,即,解得,所以不等式的解集为.故答案为:8.(2023·安徽宣城·统考二模)已知函数,则不等式的解集是.【答案】【分析】令,判断的奇偶性与单调性,则问题转化为,即,即可得到自变量的不等式,解得即可.【详解】因为,令,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则函数为偶函数,又,当时,,,所以,所以在上单调递增,又,由可得,即,即,所以,解得,即不等式的解集是.故答案为:9.(2023秋·宁夏银川·高三银川一中校考阶段练习)已知函数,则不等式的解集为.【答案】【分析】先根据函数特点构造,得到其奇偶性和单调性,再对不等式变形得到,根据单调性得到,解不等式求出答案.【详解】令,定义域...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·必修第一册(北师大版)课时作业WORD  章末质量检测(五).doc
高中数学·必修第一册(北师大版)课时作业WORD 章末质量检测(五).doc
免费
15下载
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三二模数学试题(原卷版).docx
免费
0下载
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
2022年高考数学试卷(新高考Ⅱ卷)(解析卷).pdf
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 7.docx
免费
28下载
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.5 数列求和.pptx
免费
0下载
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
第04讲+指数与指数函数(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考).pptx
免费
0下载
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
2025年新高考数学复习资料第二章 一元二次函数、方程和不等式(综合检测)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版.docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
高中2023《微专题·小练习》·数学·理科·L-3专练7 二次函数与幂函数.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
高中2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
0下载
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
2024年新高考数学复习资料第四章 导数及其应用(综合检测)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2016年高考数学真题( 江苏自主命题).doc
2016年高考数学真题( 江苏自主命题).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练3.docx
免费
27下载
高中2024版《微专题》·数学·新高考专练 1.docx
高中2024版《微专题》·数学·新高考专练 1.docx
免费
0下载
2009年高考数学真题(理科)(安徽自主命题).doc
2009年高考数学真题(理科)(安徽自主命题).doc
免费
5下载
2015年湖南省高考数学试卷(文科).doc
2015年湖南省高考数学试卷(文科).doc
免费
0下载
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
思想04+运用转化与化归的思想方法解题(4大核心考点)(课件)-2024年高考数学二轮复习讲练测(新教材新高考).pptx
免费
0下载
1999年高考数学真题(文科)(湖北自主命题).doc
1999年高考数学真题(文科)(湖北自主命题).doc
免费
9下载
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
2025年新高考数学复习资料专题14 导数与函数的单调性(九大题型+模拟精练)(解析版).docx
免费
0下载
2019年高考数学试卷(上海)(秋考)(解析卷).doc
2019年高考数学试卷(上海)(秋考)(解析卷).doc
免费
0下载
2008年高考理科数学试题(天津卷)及参考答案.docx
2008年高考理科数学试题(天津卷)及参考答案.docx
免费
17下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群