2024年新高考数学复习资料热点2-2 函数的最值(值域)及应用(8题型+满分技巧+限时检测)(解析版).docx本文件免费下载 【共25页】

2024年新高考数学复习资料热点2-2 函数的最值(值域)及应用(8题型+满分技巧+限时检测)(解析版).docx
2024年新高考数学复习资料热点2-2 函数的最值(值域)及应用(8题型+满分技巧+限时检测)(解析版).docx
2024年新高考数学复习资料热点2-2 函数的最值(值域)及应用(8题型+满分技巧+限时检测)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com热点2-3函数的最值(值域)及应用函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。【题型1单调性法求函数的最值(值域)】满分技巧函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)基本初等函数如一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数可直接判断函数的单调性,从而求得值域;(2)可根据单调性的运算性质判断函数的单调性。(3)对于复合函数,可根据“同增异减”判断函数的单调性。【例1】(2023·宁夏固原·高三校考阶段练习)函数的值域是()A.B.C.D.【答案】B【解析】函数的图象是一条开口向下的抛物线,对称轴为,所以该函数在上单调递增,在上单调递减,所以,又,所以,即函数的值域为.故选:B.【变式1-1】(2023·广东中山·高三校考阶段练习)函数,的值域为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】【解析】因为和在上均为减函数,所以在上为减函数,所以,即,所以值域为.【变式1-2】(2023·广东深圳·高三珠海市第一中学校联考阶段练习)已知函数,则的最大值为()A.B.C.D.【答案】B【解析】当时,在上单调递增,此时,,当时,在上单调递减,此时,,综上可知,的最大值为.故选:B.【变式1-3】(2023·河南焦作·高三博爱县第一中学校考阶段练习)已知函数,,则的最大值为()A.B.C.D.1【答案】A【解析】由“对勾函数”的性质可得在上单调递减,在上单调递增,,,所以,故选:A.【变式1-4】(2023·海南海口·海南华侨中学校考二模)已知函数是上的单调函数,且,则在上的值域为()A.B.C.D.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】D【解析】因为是上的单调函数,所以存在唯一的,使得,则.因为为上的增函数,且,所以,所以.因为在上单调递增,所以,得.故选:D.【题型2图象法求函数的最值(值域)】满分技巧画出函数的图象,根据图象确定函数的最大值与最小值,常见于含绝对值的函数。【例2】(2023·全国·模拟预测)已知函数.(1)画出的图像,并直接写出的值域;(2)若不等式恒成立,求实数的取值范围.【答案】(1)图象见解析,函数的值域是;(2)或.【解析】(1)当时,,当时,,当时,,所以,的图象如图:由图可知,函数的值域是.(2)若不等式恒成立,则,则,即,解得或.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式2-1】(2023·河南新乡·高三校考阶段练习)对,用表示,中的较大者,记为,若函数,则的最小值为.【答案】【解析】当,即,即时,,当,,即或时,,所以,函数图象如图所示:由图可得,函数在,上递减,在上递增,所以.【变式2-2】(2023·重庆渝中·高三重庆巴蜀中学校考阶段练习)定义在上的函数满足,且当时,,当时,的值域为()A.B.C.D.【答案】B【解析】由函数满足,且当时,当时,可得;当时,可得,所以在区间上,可得,作函数的图象,如图所示,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以当时,,故选:B.【变式2-3】(2023·北京·高三北京四中校考期中)已知,若实数,则在区间上的最大值的取值范围是()A.B.C.D.【答案】C【解析】作出函数的图象如图:因为,因为,所以,表示函数上的点到直线的距离,由图可知,当时,取得最大值,最大值为;当时,,结合图象可知,在区间上总有,所以,此时的最大值为;当时,由图可知,,且.综上,在区间上的最大值的取值范围为.故选:C【题型3换元法求函数的最值(值域)】满分技巧小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com换元法:利用换元法将函数转化为易求值域...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群