2024年新高考数学复习资料热点7-3 双曲线及其应用(8题型+满分技巧+限时检测)(解析版).docx本文件免费下载 【共40页】

2024年新高考数学复习资料热点7-3 双曲线及其应用(8题型+满分技巧+限时检测)(解析版).docx
2024年新高考数学复习资料热点7-3 双曲线及其应用(8题型+满分技巧+限时检测)(解析版).docx
2024年新高考数学复习资料热点7-3 双曲线及其应用(8题型+满分技巧+限时检测)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com热点7-3双曲线及其应用双曲线及其应用是高考数学的重点与难点,在近几年高考数学试卷中,双曲线的相关题型几乎年年都会考到,属于热点问题。题型比较丰富,选择题、填空题、解答题都出现过,主要通过双曲线的定义、方程及性质考查数学运算能力及转化思想,难度中等偏难。【题型1双曲线的定义及概念辨析】满分技巧(1)在双曲线定义中若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;(2)若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);(3)若常数满足约束条件:,则动点轨迹不存在;(4)若常数,则动点轨迹为线段F1F2的垂直平分线。【例1】(2023·全国·高三专题练习)已知动点满足,则动点的轨迹是()A.射线B.直线C.椭圆D.双曲线的一支【答案】A【解析】设,由题意知动点M满足|,故动点M的轨迹是射线.故选:A.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式1-1】(2023·四川绵阳·高三南山中学校考阶段练习)双曲线C:(,)的一条渐近线过点,,是C的左右焦点,且,若双曲线上一点M满足,则()A.或B.C.D.【答案】B【解析】因为,,所以,所以或(舍),又因为双曲线的渐近线过点,所以,所以,所以,所以,所以,若在左支上,,符合要求,所以,若在右支上,,不符合要求,所以,故选:B.【变式1-2】(2023·河北·模拟预测)已知双曲线的上、下焦点分别为,,的一条渐近线过点,点在上,且,则.【答案】11【解析】由得双曲线的标准方程为:,所以,所以双曲线的渐近线方程为:,又的一条渐近线过点,所以,因为点在上,,为双曲线的上、下焦点,所以,由,所以,所以或(舍去).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式1-3】(2023·全国·高三专题练习)已知圆,圆,圆与圆、圆外切,则圆心的轨迹方程为.【答案】【解析】设圆的半径为,圆的圆心,半径,圆的圆心,半径,因为圆与圆、圆外切,则,所以,所以点的轨迹是以为焦点的双曲线的右支,又,则,所以其轨迹方程为.【变式1-4】(2023·河北·石家庄一中校联考模拟预测)(多选)已知复数,,则下列结论正确的是()A.方程表示的在复平面内对应点的轨迹是圆B.方程表示的在复平面内对应点的轨迹是椭圆C.方程表示的在复平面内对应点的轨迹是双曲线的一支D.方程表示的在复平面内对应点的轨迹是抛物线【答案】AC【解析】由复数模的几何意义知,表示复平面内点与点之间的距离为定值2,则在复平面内对应点的轨迹是圆,故A正确;由复数模的几何意义知,表示复平面内点到点和的距离之和为,又,不满足椭圆的定义,故B不正确;由复数模的几何意义知,表示复平面内点到点和的距离之差为1,又,满足双曲线的定义,故C正确;对于D,可化为,表示复平面内点到点和的距离相等,轨迹是直线,故D不正确,故选:AC.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【题型2利用定义求距离和差最值】满分技巧利用定义||PF1|-|PF2||=2a转化或变形,借助三角形性质及基本不等式求最值【例2】(2023·天津南开·统考一模)已知拋物线上一点到准线的距离为是双曲线的左焦点,是双曲线右支上的一动点,则的最小值为()A.12B.11C.10D.9【答案】D【解析】拋物线的准线为,则点到准线的距离为,所以,则,故,设是双曲线的右焦点,则,则,故,当且仅当三点共线时取等号,所以的最小值为.故选:D.【变式2-1】(2023·江西赣州·统考一模)已知点,双曲线的左焦点为,点在双曲线的右支上运动.当的周长最小时,()A.B.C.D.【答案】C【解析】由双曲线得到,,,左焦点,设右焦点.当的周长最小时,取到最小值,所以只需求出的最小值即可.===.故选:C.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式2-2】(2023·四川南充·校考模拟预测)已知是离心率为的双曲线的右支上一点,则到直...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024年新高考数学复习资料专题5  空间向量与立体几何(原卷版)-.docx
2024年新高考数学复习资料专题5 空间向量与立体几何(原卷版)-.docx
免费
0下载
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
2025年新高考数学复习资料专题08 数列求和(奇偶项讨论求和)(典型题型归类训练)(原卷版).docx
免费
0下载
2011年高考数学试卷(理)(四川)(空白卷).pdf
2011年高考数学试卷(理)(四川)(空白卷).pdf
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
高中2022·微专题·小练习·数学·理科【统考版】专练28.docx
免费
0下载
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
2025年新高考数学复习资料专题03 等式性质与不等式性质(思维导图+知识清单+核心素养分析+方法归纳).docx
免费
0下载
2023年高考数学试卷(天津)(空白卷).docx
2023年高考数学试卷(天津)(空白卷).docx
免费
0下载
2016年四川省高考数学试卷(理科).doc
2016年四川省高考数学试卷(理科).doc
免费
1下载
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
高中数学状元笔记 08圆锥曲线解题方法.Removed-Output(1).pdf
免费
9下载
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
精品解析:上海市静安区2024届高三下学期期中教学质量调研数学试卷(原卷版).docx
免费
0下载
2005年青海高考理科数学真题及答案.doc
2005年青海高考理科数学真题及答案.doc
免费
2下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
2022年高考数学试卷(文)(全国乙卷)(空白卷) (12).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课].pptx
免费
0下载
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
2024年新高考数学复习资料专题01 集合与常用逻辑用语-(原卷版).docx
免费
0下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(四).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(四).docx
免费
19下载
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
2024年新高考数学复习资料大题培优04立体几何归类( 7大题型)(解析版).docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2012年高考数学试卷(文)(上海)(空白卷).doc
2012年高考数学试卷(文)(上海)(空白卷).doc
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
高中2022·微专题·小练习·数学·理科【统考版】专练41.docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
2022年高考数学试卷(文)(全国乙卷)(解析卷) (13).docx
免费
0下载
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
2021年高考数学试卷(新高考Ⅰ卷)(空白卷) (4).pdf
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料