2024年新高考数学复习资料通关秘籍07 函数性质(易错点 七大题型)(解析版)-备战2024年高考数学抢分秘籍(新高考专用).docx本文件免费下载 【共35页】

2024年新高考数学复习资料通关秘籍07 函数性质(易错点 七大题型)(解析版)-备战2024年高考数学抢分秘籍(新高考专用).docx
2024年新高考数学复习资料通关秘籍07 函数性质(易错点 七大题型)(解析版)-备战2024年高考数学抢分秘籍(新高考专用).docx
2024年新高考数学复习资料通关秘籍07 函数性质(易错点 七大题型)(解析版)-备战2024年高考数学抢分秘籍(新高考专用).docx
小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com秘籍07函数性质目录【高考预测】概率预测+题型预测+考向预测【应试秘籍】总结常考点及应对的策略【误区点拨】点拨常见的易错点易错点:对称中心平移和对称轴平移后求值问题【抢分通关】精选名校模拟题,讲解通关策略【题型一】中心对称性质1:几个复杂的奇函数【题型二】中心对称性质2:与三角函数结合的中心对称【题型三】轴对称【题型四】中心对称和轴对称构造出周期性【题型五】画图:类周期函数【题型六】恒成立和存在型问题【题型七】嵌套函数概率预测☆☆☆☆☆题型预测选择题、填空题☆☆☆☆☆考向预测函数图像的画法与零点问题函数知识无处不在,它可以和任何知识结合起来考察,尤其是由数学语言来判断函数的周期或者对称轴以及对称中心,再解决相应的问题,所以熟练掌握函数的基本性质是基础,而高考考察的即为延申的代数问题,包括抽象函数的理解和图像的变化。对于高三的学生,需要把常见的结论以及数学语言的理解熟练于心,才能保证做题的速度与准确度。易错点:对称中心平移和对称轴平移后求值问题若f(x)都可以唯一表示成一个奇函数g(x)与一个偶函数h(x)之和,当h(x)m时,则f(x)关于点(0,m)中心对称,即可以理解为将奇函数g(x)向上平移了m个单位,即f(x)f(x)2f(0)2m;当h(x)m时,则有f(x)f(x)2h(x).小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com推论若f(x)g(x)m,则f(x)max+f(x)min2f(0)2m.例(1)已知f(x)=,则.(2)已知f(x)=,则.(3)已知函数,则.(4)已知函数,则.注意辨别奇函数g(x)和常数项m后直接用f(x)f(x)2f(0)2m来破解.变式1:(2024·浙江绍兴·二模)已知定义在上的函数在区间上单调递增,且满足,,则()A.B.C.D.【答案】BCD【详解】对于函数有,,则函数关于直线对称,由,则函数关于点对称,所以,所以得,则,故函数的周期为,且,故函数为偶函数,因为函数在区间上单调递增,则函数的大致图象如下图:由对称性可得,所以,故A不正确;由于,,所以,故B正确;又,,所以,故C正确;小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com,且,因为,所以,故,所以,故D正确.故选:BCD.变式2:(2024·广西·二模)已知定义在上的函数满足.若的图象关于点对称,且,则()A.的图象关于点对称B.函数的图象关于直线对称C.函数的周期为2D.【答案】ABD【详解】对A,因为的图象关于点对称,则的图象关于点对称,故的图象关于点对称,故A正确;对B,,,又,故.即,故的图象关于直线对称,故B正确;对C,由A,,且,又因为,故,即,故,即.由B,,故,故的周期为4,故C错误;对D,由,的图象关于点对称,且定义域为R,则,,又,代入可得,则,又,故,,,,又的周期为4,.则小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com.即,则,故D正确.故选:ABD【题型一】中心对称性质1:几个复杂的奇函数中心对称的数学语言:若满足,则关于中心对称三次函数的对称中心的横坐标即为二次求导的零点。【例1】(2024·陕西西安·三模)已知函数,若,则的取值范围为.【答案】【详解】由条件知,令,则,易知,即为奇函数,又,易知在时单调递减,由复合函数的单调性及奇函数的性质得在R上单调递减,小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com对于,所以.故答案为:.【例2】(多选)(2024·重庆·模拟预测)函数,,那么()A.是偶函数B.是奇函数C.是奇函数D.是奇函数【答案】BC【详解】因为,所以为偶函数,因为,即,所以为奇函数,所以为非奇非偶函数,A错误;,所以为奇函数,B正确;,所以是奇函数,C正确;令,,为偶函数,D错误.故选:BC.【例3】(多选)(2024·湖南娄底·一模)已知函数的定义域和值域均为,对于任意非零实数,函数满足:,且在上单调递减,,则下列结论错误的是()A.B.C.在定义域内单调递减D.为奇函数【答案】BC【详解】对于,令,则,因,故得,故A正确;对于由,小学、初中...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群