小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com秘籍07函数性质目录【高考预测】概率预测+题型预测+考向预测【应试秘籍】总结常考点及应对的策略【误区点拨】点拨常见的易错点易错点:对称中心平移和对称轴平移后求值问题【抢分通关】精选名校模拟题,讲解通关策略【题型一】中心对称性质1:几个复杂的奇函数【题型二】中心对称性质2:与三角函数结合的中心对称【题型三】轴对称【题型四】中心对称和轴对称构造出周期性【题型五】画图:类周期函数【题型六】恒成立和存在型问题【题型七】嵌套函数概率预测☆☆☆☆☆题型预测选择题、填空题☆☆☆☆☆考向预测函数图像的画法与零点问题函数知识无处不在,它可以和任何知识结合起来考察,尤其是由数学语言来判断函数的周期或者对称轴以及对称中心,再解决相应的问题,所以熟练掌握函数的基本性质是基础,而高考考察的即为延申的代数问题,包括抽象函数的理解和图像的变化。对于高三的学生,需要把常见的结论以及数学语言的理解熟练于心,才能保证做题的速度与准确度。易错点:对称中心平移和对称轴平移后求值问题若f(x)都可以唯一表示成一个奇函数g(x)与一个偶函数h(x)之和,当h(x)m时,则f(x)关于点(0,m)中心对称,即可以理解为将奇函数g(x)向上平移了m个单位,即f(x)f(x)2f(0)2m;当h(x)m时,则有f(x)f(x)2h(x).小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com推论若f(x)g(x)m,则f(x)max+f(x)min2f(0)2m.例(1)已知f(x)=,则.(2)已知f(x)=,则.(3)已知函数,则.(4)已知函数,则.注意辨别奇函数g(x)和常数项m后直接用f(x)f(x)2f(0)2m来破解.变式1:(2024·浙江绍兴·二模)已知定义在上的函数在区间上单调递增,且满足,,则()A.B.C.D.【答案】BCD【详解】对于函数有,,则函数关于直线对称,由,则函数关于点对称,所以,所以得,则,故函数的周期为,且,故函数为偶函数,因为函数在区间上单调递增,则函数的大致图象如下图:由对称性可得,所以,故A不正确;由于,,所以,故B正确;又,,所以,故C正确;小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com,且,因为,所以,故,所以,故D正确.故选:BCD.变式2:(2024·广西·二模)已知定义在上的函数满足.若的图象关于点对称,且,则()A.的图象关于点对称B.函数的图象关于直线对称C.函数的周期为2D.【答案】ABD【详解】对A,因为的图象关于点对称,则的图象关于点对称,故的图象关于点对称,故A正确;对B,,,又,故.即,故的图象关于直线对称,故B正确;对C,由A,,且,又因为,故,即,故,即.由B,,故,故的周期为4,故C错误;对D,由,的图象关于点对称,且定义域为R,则,,又,代入可得,则,又,故,,,,又的周期为4,.则小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com.即,则,故D正确.故选:ABD【题型一】中心对称性质1:几个复杂的奇函数中心对称的数学语言:若满足,则关于中心对称三次函数的对称中心的横坐标即为二次求导的零点。【例1】(2024·陕西西安·三模)已知函数,若,则的取值范围为.【答案】【详解】由条件知,令,则,易知,即为奇函数,又,易知在时单调递减,由复合函数的单调性及奇函数的性质得在R上单调递减,小学、初中、高中各种卷真知文案合同试题识归纳PPT等免下费载www.doc985.com对于,所以.故答案为:.【例2】(多选)(2024·重庆·模拟预测)函数,,那么()A.是偶函数B.是奇函数C.是奇函数D.是奇函数【答案】BC【详解】因为,所以为偶函数,因为,即,所以为奇函数,所以为非奇非偶函数,A错误;,所以为奇函数,B正确;,所以是奇函数,C正确;令,,为偶函数,D错误.故选:BC.【例3】(多选)(2024·湖南娄底·一模)已知函数的定义域和值域均为,对于任意非零实数,函数满足:,且在上单调递减,,则下列结论错误的是()A.B.C.在定义域内单调递减D.为奇函数【答案】BC【详解】对于,令,则,因,故得,故A正确;对于由,小学、初中...