2024年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx本文件免费下载 【共32页】

2024年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第11练对数与对数函数(精练)【A组在基础中考查功底】一、单选题1.(2023·天津·统考二模)已知,则()A.3B.5C.D.【答案】A【分析】根据指对运算化简,再根据对数运算法则计算的值.【详解】,.故选:A.2.(2023·山西阳泉·统考三模)函数在区间存在零点.则实数m的取值范围是()A.B.C.D.【答案】B【分析】利用函数的单调性的性质及函数零点的存在性定理即可求解.【详解】由在上单调递增,在上单调递增,得函数在区间上单调递增,因为函数在区间存在零点,所以,即,解得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以实数m的取值范围是.故选:B.3.(2023·浙江绍兴·统考模拟预测)基本再生数与世代间隔是新冠肺炎的流行病学基本参数,基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(其中是自然对数的底数)描述累计感染病例数随时间(单位:天)的变化规律,指数增长率与,近似满足.有学者基于已有数据估计出,,据此,在新冠肺炎疫情初始阶段,累计感染病例数增加倍需要的时间约为()(参考数据:,)A.天B.天C.天D.天【答案】B【分析】根据所给模型求得,令,求得,根据条件可得方程,然后解出即可.【详解】把,代入,可得,,当时,,则,两边取对数得,解得.故选:B.4.(2023春·贵州·高三校联考期中)若,,,则()A.B.C.D.【答案】D【分析】用对数函数的单调性和比较,用指数函数的单调性和比较,用对数函数的单调性和比较,即可判断大小关系.【详解】因为,所以为减函数,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,即.因为,所以为增函数,所以,即.因为,所以为增函数,所以,即,所以.故选:D5.(2023·云南·校联考二模)函数的图象大致形如()A.B.C.D.【答案】A【分析】根据函数的奇偶性和函数值等知识确定正确答案.【详解】依题意,为偶函数,则为偶函数,又,则.故选A.6.(2023春·黑龙江哈尔滨·高三哈尔滨市第十三中学校校考开学考试)已知函数.若,且,则的取值范围是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案】C【分析】根据函数图象得,则,令,利用对勾函数的图象与性质即可求出其范围.【详解】由得.根据函数的图象及,得,,所以.令,根据对勾函数的图像与性质易得在上单调递增,所以.故,故选:C.7.(2023·全国·高三专题练习)已知函数,恒过定点,过定点的直线与坐标轴的正半轴相交,则的最大值为()A.B.C.D.【答案】C【分析】求出,代入直线方程,再根据基本不等式可求出结果.【详解】令,即,得,则,则且,,由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当且仅当,时,等号成立,故选:C【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.8.(2023秋·江苏无锡·高三统考期末)函数的部分图象大致为().A.B.C.D.【答案】A【分析】先求出定义域,由得到为偶函数,结合函数在上函数值的正负,排除BC,结合函数图象的走势,排除D,得到正确答案.【详解】变形为,定义域为,,故为偶函数,关于y轴对称.当时,,时,,排除BC,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又时,,故排除D,A正确.故选:A.9.(2023·河南周口·统考模拟预测)若,,,则()A.B.C.D.【答案】A【分析】运用对数的运算法则和指数函...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
免费
0下载
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
免费
0下载
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
免费
0下载
2023年新课标全国Ⅰ卷数学真题.docx
2023年新课标全国Ⅰ卷数学真题.docx
免费
0下载
2023高考真题 新高考II卷数学-解析 .pdf
2023高考真题 新高考II卷数学-解析 .pdf
免费
12下载
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
免费
0下载
2018年上海市高考数学试卷(1)往年高考真题.doc
2018年上海市高考数学试卷(1)往年高考真题.doc
免费
0下载
2025年新高考数学复习资料提优点4 必要性探路.pptx
2025年新高考数学复习资料提优点4 必要性探路.pptx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
免费
0下载
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
免费
0下载
2014年浙江省高考数学试卷(理科).doc
2014年浙江省高考数学试卷(理科).doc
免费
1下载
专题06 平面向量(15区新题速递)(解析版).docx
专题06 平面向量(15区新题速递)(解析版).docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
2012年高考数学试卷(理)(上海)(解析卷).doc
2012年高考数学试卷(理)(上海)(解析卷).doc
免费
0下载
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群