小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第15练导数与函数的单调性(精练)一、解答题1.(2022·浙江·统考高考真题)设函数.(1)求的单调区间;【答案】(1)的减区间为,增区间为.【详解】(1),当,;当,,故的减区间为,的增区间为.2.(2021·全国·统考高考真题)已知函数.(1)讨论的单调性;【详解】(1)由函数的解析式可得:,当时,若,则单调递减,若,则单调递增;当时,若,则单调递增,若,则单调递减,若,则单调递增;刷真题明导向小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,在上单调递增;当时,若,则单调递增,若,则单调递减,若,则单调递增;3.(2021·浙江·统考高考真题)设a,b为实数,且,函数(1)求函数的单调区间;【答案】(1)时,在上单调递增;时,函数的单调减区间为,单调增区间为;【分析】(1)首先求得导函数的解析式,然后分类讨论即可确定函数的单调性;【详解】(1),①若,则,所以在上单调递增;②若,当时,单调递减,当时,单调递增.综上可得,时,在上单调递增;时,函数的单调减区间为,单调增区间为.4.(2021·全国·高考真题)设函数,其中.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)讨论的单调性;【答案】(1)的减区间为,增区间为;【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.又,因为,故,当时,;当时,;所以的减区间为,增区间为.5.(2021·全国·统考高考真题)已知且,函数.(1)当时,求的单调区间;【答案】(1)上单调递增;上单调递减;【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;【详解】(1)当时,,令得,当时,,当时,,∴函数在上单调递增;上单调递减;【A组在基础中考查功底】一、单选题1.(2023·全国·高三专题练习)函数的单调减区间是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案】B【分析】由,可解得结果.【详解】,由,得,所以的单调递减区间为.故选:B2.(2023·全国·高三专题练习)函数,则()A.为偶函数,且在上单调递增B.为偶函数,且在上单调递减C.为奇函数,且在上单调递增D.为奇函数,且在上单调递减【答案】A【分析】先用定义法判断函数的奇偶性,再求导得到函数的单调性,进而选出答案.【详解】函数定义域为R,且,所以为偶函数,故排除选项C,D;又当时,,则在上单调递增,故选项A正确,选项B错误,故选:A.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.(2023·全国·高三专题练习)设函数在定义域内可导,的图象如图所示,则其导函数的图象可能是()A.B.C.D.【答案】A【分析】根据函数的单调性与导函数的关系判断即可;【详解】解:由的图象可知,当时函数单调递增,则,故排除C、D;当时先递减、再递增最后递减,所以所对应的导数值应该先小于,再大于,最后小于,故排除B;故选:A4.(2023·全国·高三专题练习)若函数在区间内单调递增,则a的取值范围是()A.B.C.D.【答案】D【分析】根据函数单调性与导数的关系进行求解即可.【详解】由,因为函数在区间内单调递增,所以有在上恒成立,即在上恒成立,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com因为,所以由,因为,所以,于是有,故选:D5.(2023·全国·高三专题练习)若函数在区间上单调递增,则实数k的取值范围是()A.B.C.D.【答案】B【分析】利用函数在区间上的导函数为非负数,列不等式,解不等式即可求得的取值范围.【详解】由题意得,在区间上恒成立,即在区间上恒成立,又函数在上单调递增,得,所以,即实数的取值范围是.故选:B6.(2023·全国·高三专题练习)若函数存在单调递减区间,则实数b的取值范围是()A.B.C.D.【答案】B【分析】首先计算出,由存在单调递减区间知在上有解即可得出结果.小学、初中、高...