2024年新高考数学复习资料第04讲 指数与指数函数(讲义)(解析版).docx本文件免费下载 【共18页】

2024年新高考数学复习资料第04讲 指数与指数函数(讲义)(解析版).docx
2024年新高考数学复习资料第04讲 指数与指数函数(讲义)(解析版).docx
2024年新高考数学复习资料第04讲 指数与指数函数(讲义)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第04讲指数与指数函数目录考点要求考题统计考情分析(1)理解有理数指数幂的含义,了解实数指数幂的意义,掌握指数幂的运算性质.(2)通过实例,了解指数函数的实际意义,会画指数函数的图象.(3)理解指数函数的单调性、特殊点等性质,并能简单应用.2022年甲卷第12题,5分2020年新高考II卷第11题,5分从近年的高考情五况来看,指数运算与指数函数是高考的一个点也是一个基本点重,常与二次函数、幂函数、对数函数、三角函数综合,考数值大小的查比较和函数方程问题.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1、指数及指数运算(1)根式的定义:一般地,如果,那么叫做的次方根,其中,,记为,称为根指数,称为根底数.(2)根式的性质:当为奇数时,正数的次方根是一个正数,负数的次方根是一个负数.当为偶数时,正数的次方根有两个,它们互为相反数.(3)指数的概念:指数是幂运算中的一个参数,为底数,为指数,指数位于底数的右上角,幂运算表示指数个底数相乘.(4)有理数指数幂的分类①正整数指数幂;②零指数幂;③负整数指数幂,;④的正分数指数幂等于,的负分数指数幂没有意义.(5)有理数指数幂的性质①,,;②,,;③,,;④,,.2、指数函数图象a1xy(1,a)1Oa1xy(1,a)1O性质①定义域,值域②,即时,,图象都经过点③,即时,等于底数④在定义域上是单调减函数在定义域上是单调增函数小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com⑤时,;时,时,;时,⑥既不是奇函数,也不是偶函数【解题方法总结】1、指数函数常用技巧(1)当底数大小不定时,必须分“和”“两种情形讨论.”(2)当时,,;的值越小,图象越靠近轴,递减的速度越快.当时,;的值越大,图象越靠近轴,递增速度越快.(3)指数函数与的图象关于轴对称.【典例例题】题法一法指数运算及指数方程、指数法法法【例1】(2023·海南省直辖县级单位·统考模拟预测)()A.B.C.D.【答案】B【解析】.故选:B.【对点法法1】(2023·全国·高三专题练习)下列结论中,正确的是()A.设则B.若,则C.若,则D.【答案】B【解析】对于A,根据分式指数幂的运算法则,可得,选项A错误;对于B,,故,选项B正确;对于C,,,因为,所以,选项C错误;对于D,,选项D错误.故选:B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【对点法法2】(2023·全国·高三专题练习)()A.B.C.D.【答案】B【解析】.故选:B【对点法法3】(2023·全国·高三专题练习)甲、乙两人解关于x的方程,甲写错了常数b,得到的根为或x=,乙写错了常数c,得到的根为或,则原方程的根是()A.或B.或C.或D.或【答案】D【解析】令,则方程可化为,甲写错了常数b,所以和是方程的两根,所以,乙写错了常数c,所以1和2是方程的两根,所以,则可得方程,解得,所以原方程的根是或故选:D【对点法法4】(2023·全国·高三专题练习)若关于的方程有解,则实数的取值范围是()A.B.C.D.【答案】A【解析】方程有解,有解,令,则可化为有正根,则在有解,又当时,所以,故选:.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【对点法法5】(2023·上海青浦·统考一模)不等式的解集为______.【答案】【解析】函数在R上单调递增,则,即,解得,所以原不等式的解集为.故答案为:【对点法法6】(2023·全国·高三专题练习)不等式的解集为___________.【答案】【解析】由,可得.令,因为均为上单调递减函数则在上单调逆减,且,,故不等式的解集为.故答案为:.【解题总结】利用指数的运算性质解题.对于形如,,的形式常用化同底转化,再利用指“”数函数单调性解决;或用取对数的方法求解“”.形如或的形式,可借助换元法转化二次方程或二次不等式求解.题二指数函数的及型:像性【例2】法题(多)(2023·全国·高三专题练习)函数的图象可能为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版).doc
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版).doc
免费
3下载
广东省茂名市信宜市2021-2022学年高一上学期期末数学试题 (1).pdf
广东省茂名市信宜市2021-2022学年高一上学期期末数学试题 (1).pdf
免费
6下载
2024年新高考数学复习资料重难点突破01  平面向量中最值、范围问题(解析版).docx
2024年新高考数学复习资料重难点突破01 平面向量中最值、范围问题(解析版).docx
免费
0下载
2024年新高考数学复习资料第32练 空间点、直线、平面间的位置关系(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
2024年新高考数学复习资料第32练 空间点、直线、平面间的位置关系(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)解析版.docx
免费
0下载
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
2024年新高考数学复习资料专题05 一元函数的导数及其应用(原卷版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练109.docx
高中2024版考评特训卷·数学【新教材】考点练109.docx
免费
0下载
2017年高考数学试卷(理)(北京)(空白卷).pdf
2017年高考数学试卷(理)(北京)(空白卷).pdf
免费
0下载
高考数学复习  模拟预测卷01(新课标卷)(原卷版).docx
高考数学复习 模拟预测卷01(新课标卷)(原卷版).docx
免费
0下载
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
2010年高考数学试卷(文)(大纲版Ⅱ,全国卷Ⅱ)(解析卷) (2).pdf
免费
0下载
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (五).doc
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (五).doc
免费
13下载
2022·微专题·小练习·数学·理科【统考版】专练37 .docx
2022·微专题·小练习·数学·理科【统考版】专练37 .docx
免费
17下载
高中2024版《微专题》·数学(文)·统考版专练 22.docx
高中2024版《微专题》·数学(文)·统考版专练 22.docx
免费
0下载
2025年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
2025年新高考数学复习资料第11练 对数与对数函数(精练:基础+重难点)-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)原卷版.docx
免费
0下载
2019年高考数学试卷(浙江)(解析卷).doc
2019年高考数学试卷(浙江)(解析卷).doc
免费
0下载
2016年湖南高考理科数学试题及答案.docx
2016年湖南高考理科数学试题及答案.docx
免费
4下载
2009年高考数学试卷(理)(山东)(解析卷).doc
2009年高考数学试卷(理)(山东)(解析卷).doc
免费
0下载
2008年高考数学试卷(理)(全国卷Ⅰ)(空白卷) (1).pdf
2008年高考数学试卷(理)(全国卷Ⅰ)(空白卷) (1).pdf
免费
0下载
2017年江苏省高考数学试卷.doc
2017年江苏省高考数学试卷.doc
免费
0下载
2025年新高考数学复习资料重难点突破02 向量中的隐圆问题(五大题型)(原卷版).docx
2025年新高考数学复习资料重难点突破02 向量中的隐圆问题(五大题型)(原卷版).docx
免费
0下载
2021年全国高考甲卷数学(理)试题(解析版).doc
2021年全国高考甲卷数学(理)试题(解析版).doc
免费
28下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群
提交所需资料详情,我们来帮找资料