2024年新高考数学复习资料重难点突破04 三次函数的图象和性质 (七大题型)(原卷版).docx本文件免费下载 【共14页】

2024年新高考数学复习资料重难点突破04 三次函数的图象和性质 (七大题型)(原卷版).docx
2024年新高考数学复习资料重难点突破04 三次函数的图象和性质 (七大题型)(原卷版).docx
2024年新高考数学复习资料重难点突破04 三次函数的图象和性质 (七大题型)(原卷版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点突破04三次函数的图象和性质目录1、基本性质设三次函数为:(、、、且),其基本性质有:性质1:①定义域为.②值域为,函数在整个定义域上没有最大值、最小值.③单调性和图像:图像小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com性质2:三次方程的实根个数由于三次函数在高考中出现频率最高,且四次函数、分式函数等都可转化为三次函数来解决,故以三次函数为例来研究根的情况,设三次函数其导函数为二次函数:,判别式为:△=,设的两根为、,结合函数草图易得:(1)若,则恰有一个实根;(2)若,且,则恰有一个实根;(3)若,且,则有两个不相等的实根;(4)若,且,则有三个不相等的实根.说明:(1)(2)含有一个实根的充要条件是曲线与轴只相交一次,即在R上为单调函数(或两极值同号),所以(或,且);(5)有两个相异实根的充要条件是曲线与轴有两个公共点且其中之一为切点,所以,且;(6)有三个不相等的实根的充要条件是曲线与轴有三个公共点,即有一个极大值,一个极小值,且两极值异号.所以且.性质3:对称性(1)三次函数是中心对称曲线,且对称中心是;;(2)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2、常用技巧(1)其导函数为对称轴为,所以对称中心的横坐标也就是导函数的对称轴,可见,图象的对称中心在导函数的对称轴上,且又是两个极值点的中点,同时也是二阶导为零的点;(2)是可导函数,若的图象关于点对称,则图象关于直线对称.(3)若图象关于直线对称,则图象关于点对称.(4)已知三次函数的对称中心横坐标为,若存在两个极值点,,则有.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com题型一:三次函数的零点问题例1.(2023·全国·高三专题练习)函数存在3个零点,则的取值范围是()A.B.C.D.例2.(2023·江苏扬州·高三校考阶段练习)设为实数,函数.(1)求的极值;(2)是否存在实数,使得方程恰好有两个实数根?若存在,求出实数的值;若不存在,请说明理由.例3.(2023·四川绵阳·高三四川省绵阳南山中学校考阶段练习)已知函数,且在和处取得极值.(1)求函数的解析式;(2)设函数,若有且仅有一个零点,求实数的取值范围.变式1.(2023·天津河西·高三天津实验中学校考阶段练习)已知,.(1)当,求的极值;(2)当,,设,求不等式的解集;(3)当时,若函数恰有两个零点,求的值.变式2.(2023·河北保定·高三统考阶段练习)已知函数.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求函数的图象在点处的切线方程;(2)若在上有解,求的取值范围;(3)设是函数的导函数,是函数的导函数,若函数的零点为,则点恰好就是该函数的对称中心.试求的值.变式3.(2023·山西太原·高三太原市外国语学校校考阶段练习)已知三次函数过点,且函数在点处的切线恰好是直线.(1)求函数的解析式;(2)设函数,若函数在区间上有两个零点,求实数的取值范围.变式4.(2023·全国·高三专题练习)已知函数,.(1)若函数在上单调递增,求的最小值;(2)若函数的图象与轴有且只有一个交点,求的取值范围.题型二:三次函数的最值、极值问题例4.(2023·云南·高三统考期末)已知函数,.(1)若函数在上存在单调递增区间,求实数的取值范围;(2)设.若,在上的最小值为,求的零点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com例5.(2023·高三课时练习)已知函数,.(1)若函数在上存在单调递增区间,求实数的取值范围;(2)设.若,在上的最小值为,求在上取得最大值时,对应的值.例6.(2023·江苏常州·高三常州市北郊高级中学校考期中)已知函数f(x)=,其中a>0.(1)当a=1时,求f(x)的单调增区间;(2)若曲线y=f(x)在点处的切线与y轴的交点为(0,b),求b+的最小值.变式5.(2023·广东珠海·高三校联考期中)已知函数(a,),其图象在点处的切线方程为.(1)求a,b的值;(2)求函数的单调区间和极值;(3)求函数在区间上的最大值...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(三十七) 二项式定理(2).docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(三十七) 二项式定理(2).docx
免费
26下载
2019年上海市青浦区高考数学一模试卷(含解析版).doc
2019年上海市青浦区高考数学一模试卷(含解析版).doc
免费
0下载
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
2024年新高考数学复习资料专题22 计数原理与二项式定理(原卷版).docx
免费
0下载
2016年江苏省高考数学试卷.doc
2016年江苏省高考数学试卷.doc
免费
0下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(学生版).docx.doc
免费
0下载
2024届高考数学考向核心卷—新课标版 答案.pdf
2024届高考数学考向核心卷—新课标版 答案.pdf
免费
12下载
2013年高考数学试卷(理)(陕西)(解析卷).doc
2013年高考数学试卷(理)(陕西)(解析卷).doc
免费
0下载
2000年青海高考文科数学真题及答案.doc
2000年青海高考文科数学真题及答案.doc
免费
14下载
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
精品解析:江苏省张家港市2023-2024学年高三下学期2月阶段性调研测试数学试卷(原卷版).docx
免费
0下载
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
2025年新高考数学复习资料专题突破卷14 累加、累乘、构造法求数列通项公式(解析版).docx
免费
0下载
高中数学·必修第一册(湘教版)课时作业(word)  课时作业(四十九) .docx
高中数学·必修第一册(湘教版)课时作业(word) 课时作业(四十九) .docx
免费
30下载
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
2023年高考数学试卷(新课标Ⅱ卷)(解析卷) (5).docx
免费
0下载
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
2023《微专题·小练习》·数学·理科·L-3专练46 高考大题专练(四) 立体几何的综合运用.docx
免费
13下载
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
2018年高考数学试卷(上海)(秋考)(空白卷).pdf
免费
0下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  详解答案.doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 详解答案.doc
免费
27下载
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
上海市各区高三数学一模模块汇编解析几何汇编--教师版.docx
免费
0下载
2024年新高考数学复习资料易错点10  立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
2024年新高考数学复习资料易错点10 立体几何-备战2022年高考数学考试易错题(新高考专用)(学生版) .docx
免费
0下载
2012年上海市杨浦区高考数学一模试卷(理科).doc
2012年上海市杨浦区高考数学一模试卷(理科).doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 4.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 4.docx
免费
10下载
2015年上海市杨浦区高考数学二模试卷(文科).doc
2015年上海市杨浦区高考数学二模试卷(文科).doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群