小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点突破07不等式恒成立问题目录1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1),;(2),;(3),;(4),.3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,,,.(1)若,,有成立,则;(2)若,,有成立,则;(3)若,,有成立,则;(4)若,,有成立,则的值域是的值域的子集.4、法则1若函数和满足下列条件:(1)及;(2)在点的去心邻域内,与可导且;(3),那么=.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com法则2若函数和满足下列条件:(1)及;(2),和在与上可导,且;(3),那么=.法则3若函数和满足下列条件:(1)及;(2)在点的去心邻域内,与可导且;(3),那么=.注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:(1)将上面公式中的,,,洛必达法则也成立.(2)洛必达法则可处理,,,,,,型.(3)在着手求极限以前,首先要检查是否满足,,,,,,型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止.,如满足条件,可继续使用洛必达法则.题型一:直接法例1.(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知函数.(1)已知函数在处的切线与圆相切,求实数的值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)已知时,恒成立,求实数的取值范围.例2.(2023·山东·山东省实验中学校联考模拟预测)已知函数,其中.(1)讨论方程实数解的个数;(2)当时,不等式恒成立,求的取值范围.例3.(2023·全国·统考高考真题)已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.变式1.(2023·河南·襄城高中校联考三模)已知函数,.(1)若曲线在处的切线与曲线相交于不同的两点,,曲线在A,B点处的切线交于点,求的值;(2)当曲线在处的切线与曲线相切时,若,恒成立,求a的取值范围.题型二:端点恒成立例4.(2023·四川绵阳·四川省绵阳南山中学校考模拟预测)设函数.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求在处的切线方程;(2)若任意,不等式恒成立,求实数的取值范围.例5.(2023·北京海淀·中央民族大学附属中学校考模拟预测)已知函数.(1)当时,求函数在点处的切线方程;(2)若函数在处取得极值,求实数的值;(3)若不等式对恒成立,求实数的取值范围.例6.(2023·湖南·校联考模拟预测)已知函数与分别是与的导函数.(1)证明:当时,方程在上有且仅有一个实数根;(2)若对任意的,不等式恒成立,求实数的取值范围.变式2.(2023·四川成都·石室中学校考模拟预测)已知函数,函数.(1)求函数的单调区间;(2)记,对任意的,恒成立,求实数的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com变式3.(2023·宁夏银川·校联考二模)已知函数.(1)讨论在上的单调性;(2)若对于任意,若函数恒成立,求实数k的取值范围.变式4.(2023·四川泸州·统考三模)已知函数.(1)若单调递增,求a的取值范围;(2)若,,求a的取值范围.题型三:端点不成立例7.(2023·重庆·统考模拟预测)已知函数.(1)讨论函数的极值;(2)当时,不等式恒成立,求a的取值范围.例8.(2023·江苏南京·高二南京市中华中学校考期末)已知函数.(1)讨论的单调性;(2)若不...