小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com重难点突破10利用导数解决一类整数问题目录利用导数解决一类整数问题常见技巧有:1、分离参数、分离函数、半分离2、直接限制法3、虚设零点4、必要性探路题型一:整数解问题之分离参数、分离函数、半分离例1.(2023·贵州·校联考一模)已知.(1)讨论的单调性;(2)若对恒成立,求整数a的最小值.【解析】(1)的定义域为,(ⅰ)当时,,∴在上单调递增;(ⅱ)当时,令,令,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴当时,在上单调递增;当时,在上单调递增,在上单调递减.(2)由,可得:, ,∴原命题等价于对恒成立.令,∴,令,∴,∴在上单调递增.又,故存在唯一的,使得.当时,,∴,∴在上单调递增,当时,,∴,∴在上单调递减.∴,∴时,恒成立.∴,又,∴a的最小整数值为2.例2.(2023·四川广安·广安二中校考模拟预测)已知函数.(1)若函数在上有两个零点,求实数的取值范围;(2)当时,关于的不等式恒成立,求整数的最小值.【解析】(1),,当时,,当时,,则在上单调递减,在上单调递增,若在上有两个零点,则小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解得,故的取值范围是(2),即,在时恒成立,令,,当时,,当时,,则在上单调递减,在上单调递增,故,即,当且仅当时等号成立,令,,当时,,当时,,则在单调递增,在上单调递减,,即,当且仅当时等号成立,而时,,故,当时,不等式为,而时满足题意,故整数的最小值为例3.(2023·黑龙江鹤岗·高三鹤岗一中校考阶段练习)已知函数.(1)讨论函数的单调性;(2)若为整数,且恒成立,求的最大值.【解析】(1)的定义域为,.当时,,则在上单调递增;当时,解,即,得(舍去负值);解,即,得,所以在上单调递增;解,即,得,所以在上单调递减.综上所述,当时,在上单调递增;当时,在上单小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com调递增,在上单调递减.(2)由已知可得,恒成立,,即在上恒成立.令,则只需即可.,令,在上恒成立,所以单调递增.且,,所以,,使得,且当时,,当时,.即,使得,且当时,,在上单调递减;当时,,在上单调递增.所以,在处取得唯一极小值,也是最小值.又,则.所以,令,,,,则,当时,,所以,在上单调递增,从而在上单调递减,则,又,,所以,所以.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又为整数,,所以的最大值为0.变式1.(2023·辽宁沈阳·高三沈阳二十中校联考期中)已知函数(1)判断的单调性,并比较与的大小;(2)当时,不等式恒成立,求整数k的最大值.【解析】(1)由题意知:函数的定义域为,,当时,,函数单调递减;当时,,函数单调递增;所以函数在上单调递增,在上单调递减,所以,即,所以,即,又因为在上单调递增,所以,(2)因为,所以,所以不等式可化为,因为,所以,所以不等式等价转化为对任意的恒成立,令,则,令,则,因为,所以对任意的恒成立,所以在上单调递增,因为,,故,使得,因此当时,,即在上单调递减,当时,,即在上单调递增,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故,所以,故整数的最大值为.变式2.(2023·天津河北·统考一模)已知函数.(1)求曲线在点处的切线方程;(2)讨论函数的单调性;(3)若对任意的,都有成立,求整数的最大值.【解析】(1)函数,求导得,则,而,所以曲线在点处的切线方程是.(2)函数的定义域是,,当时,,函数单调递减,当时,,函数单调递增,所以函数的递减区间是,递增区间是.(3),,令,求导得,由(2)知,在上单调递增,,,因此存在唯一,使得,即,当时,,即,当时,,即,因此函数在上单调递减,在上单调递增,于是,则,所以整数的最大值是3.变式3.(2023·全国·高三专题练习)已知函数.(1)若函数在上有两个不同的零点,求实数k的取值范围;(2)是否存在实数k,使得对任意的,都有函数的图象在的图象的下方?若存在,...