高中数学高考数学10大专题技巧--专题22 斜率型取值范围模型(教师版).docx本文件免费下载 【共10页】

高中数学高考数学10大专题技巧--专题22  斜率型取值范围模型(教师版).docx
高中数学高考数学10大专题技巧--专题22  斜率型取值范围模型(教师版).docx
高中数学高考数学10大专题技巧--专题22  斜率型取值范围模型(教师版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题22斜率型取值范围模型1.圆锥曲线中范围问题求解的基本思路解决有关范围问题的基本思路是建立目标函数或不等关系:建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题,利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围;建立不等关系时,先要恰当地引入变量(如点的坐标、角、斜率等),寻找不等关系.2.圆锥曲线中范围问题建立不等关系的基本方法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用已知的不等关系构造不等式,从而求出参数的取值范围;(4)利用隐含的不等关系建立不等式,从而求出参数的取值范围.3.圆锥曲线中范围问题的基本类型圆锥曲线中的范围问题主要有以下四种情况:(1)斜率型;(2)参数及点的坐标(横或纵)型;(3)长度和距离型;(4)面积与数量积型.【例题选讲】[例1]设椭圆+=1(a>)的右焦点为F,右顶点为A.已知|OA|-|OF|=1,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程及离心率e的值;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.[破题思路]由题目条件垂直于直线l的直线与l交于点M,与y轴交于点H,利用k·kMH=-1,建立关于k的两条直线方程,由题目条件∠MOA≤∠MAO,利用三角形的大角对大边,建立关于xM的不等式,利用题目条件BF⊥HF,即BF·HF=0建立关系式.[规范解答](1)由题意可知|OF|=c=,又|OA|-|OF|=1,所以a-=1,解得a=2,所以椭圆的方程为+=1,离心率e==.(2)设M(xM,yM),易知A(2,0),在△MAO中,∠MOA≤∠MAO⇔|MA|≤|MO|,即(xM-2)2+y≤x+y,化简得xM≥1.设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(xB,yB),联立消去y,整理得(4k2+3)x2-16k2x+16k2-12=0,解得x=2或x=.由题意得xB=,从而yB=.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由(1)知F(1,0),设H(0,yH),则FH=(-1,yH),BF=.由BF⊥HF,得BF·FH=0,即+=0,解得yH=,所以直线MH的方程为y=-x+.由消去y,得xM=.由xM≥1,得≥1,解得k≤-或k≥,所以直线l的斜率的取值范围为∪.[题后悟通]利用已知件中的几何系建目不等式的核心是用化化的思想,几何条关构标转与归数学将系化代不等式,而建出目不等式.关转为数从构标[例2]已知A是椭圆E:+=1(t>3)的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当t=4,|AM|=|AN|时,求△AMN的面积;(2)当2|AM|=|AN|时,求k的取值范围.[破题思路](1)求△AMN的面积,想到三角形的面积公式S=×底×高或S=absinC,题目条件中给出“MA⊥NA,|AM|=|AN|”,得△AMN为等腰直角三角形,故可利用面积S=|AM||AN|求解.到此就缺少|AM|,|AN|的值,由于A点已知,故想法求M,N的坐标.(2)题目条件中给出2|AM|=|AN|,可利用此条件建立t与k的关系式,缺少关于k的不等式,想到t>3即可建立k的不等式.[规范解答](1)由|AM|=|AN|,可得M,N关于x轴对称,由MA⊥NA,可得直线AM的斜率k为1.因为t=4,所以A(-2,0),所以直线AM的方程为y=x+2,代入椭圆方程+=1,可得7x2+16x+4=0,解得x=-2或x=-,所以M,N,则△AMN的面积为××=.(2)由题意知t>3,k>0,A(-,0),将直线AM的方程y=k(x+)代入+=1得(3+tk2)x2+2·tk2x+t2k2-3t=0,设M(x1,y1),则x1·(-)=,即x1=,故|AM|=|x1+|=.由题设知,直线AN的方程为y=-(x+),故同理可得|AN|=.由2|AM|=|AN|,得=,即(k3-2)t=3k(2k-1).当k=时上式不成立,因此t=.由t>3,得>3,所以=<0,即<0.由此得或解得<k<2.因此k的取值范围是(,2).[题后悟通]解本第决题(2),通已知件问时过条2|AM|=|AN|得到参数k与参数t之的系,往往间关会忽目中的已知件视题条t>3,不能建立于关k的不等式,而...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
5. 衡水中学高考积累与改错_高三数学(第1本)_260页.pdf
免费
17下载
2019年湖南高考文科数学试题及答案word版.docx
2019年湖南高考文科数学试题及答案word版.docx
免费
16下载
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(空白卷) (7).pdf
免费
0下载
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
2025年新高考数学复习资料专题04 基本不等式(九大题型+模拟精练)(原卷版).docx
免费
0下载
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
2024年新高考数学复习资料【专项精练】第10课 函数图象-2024年新高考数学分层专项精练(解析版).docx
免费
0下载
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
精品解析:上海市金山区2024届高三二模数学试题(原卷版).docx
免费
0下载
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
2025年新高考数学复习资料3.8 函数零点与方程的根(含答案).docx
免费
0下载
2022·微专题·小练习·数学【新高考】专练49.docx
2022·微专题·小练习·数学【新高考】专练49.docx
免费
1下载
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
2017年高考数学试卷(上海)(春考)(空白卷) (2).docx
免费
0下载
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
2022年高考数学试卷(文)(全国乙卷)(空白卷) (4).pdf
免费
0下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第十章第3讲 计数原理(含解析).docx
免费
0下载
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
高中2023《微专题·小练习》·数学·理科·L-3专练26 平面向量基本定理及坐标表示.docx
免费
0下载
2018年上海市崇明区高考数学一模试卷.doc
2018年上海市崇明区高考数学一模试卷.doc
免费
0下载
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
2025年新高考数学复习资料专题26 双曲线(七大题型 模拟精练 核心素养分析 方法归纳)- (新高考专用) 专题26 双曲线(七大题型 模拟精练)(原卷版).docx
免费
0下载
2012年北京高考理科数学试题及答案.doc
2012年北京高考理科数学试题及答案.doc
免费
2下载
2008年高考数学试卷(文)(广东)(解析卷).doc
2008年高考数学试卷(文)(广东)(解析卷).doc
免费
0下载
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
2015年高考数学试卷(理)(新课标Ⅱ)(解析卷) (6).pdf
免费
0下载
2024版《微专题》·数学·新高考专练 35.docx
2024版《微专题》·数学·新高考专练 35.docx
免费
30下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】主观题专练 6.docx
免费
10下载
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
高中数学高考数学10大专题技巧--专题05 立体几何中的截面问题(教师版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群