专题28三角形面积型最值逆向与三角形面积运算型最值问题最值问题——构造函数最值问题的基本解法有几何法和代数法:几何法是根据已知的几何量之间的相互关系、平面几何和解析几何知识加以解决的(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等);代数法是建立求解目标关于某个或两个变量的函数,通过求解函数的最值普通方法、基本不等式方法、导数方法等解决的.【例题选讲】[例1]定圆M:(x+)2+y2=16,动圆N过点F(,0)且与圆M相切,记圆心N的轨迹为E.(1)求轨迹E的方程;(2)设点A,B,C在E上运动,A与B关于原点对称,且|AC|=|BC|,当△ABC的面积最小时,求直线AB的方程.[例2]已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,P在椭圆上(异于椭圆C的左、右顶点),过右焦点F2作∠F1PF2的外角平分线L的垂线F2Q,交L于点Q,且|OQ|=2(O为坐标原点),椭圆的四个顶点围成的平行四边形的面积为4.(1)求椭圆C的方程;(2)若直线l:x=my+4(m∈R)与椭圆C交于A,B两点,点A关于x轴的对称点为A′,直线A′B交x轴于点D,求当△ADB的面积最大时,直线l的方程.[例3]已知抛物线C:x2=2py(p>0)和定点M(0,1),设过点M的动直线交抛物线C于A,B两点,抛物线C在A,B处的切线的交点为N.(1)若N在以AB为直径的圆上,求p的值;(2)若△ABN的面积的最小值为4,求抛物线C的方程.[例4](如图,设椭圆C:+=1(a>b>0),左、右焦点为F1,F2,上顶点为D,离心率为,且DF1·DF2=-2.(1)求椭圆C的方程;(2)设E是x轴正半轴上的一点,过点E任作直线l与C相交于A,B两点,如果+是定值,试确定点E的位置,并求S△DAE·S△DBE的最大值.[例5]已知直线l经过抛物线C:x2=4y的焦点F,且与抛物线C交于A,B两点,抛物线C在A,B两点处的切线分别与x轴交于点M,N.(1)求证:AM⊥MF;(2)记△AFM和△BFN的面积分别为S1和S2,求S1·S2的最小值.[例6](2019·浙江)如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标.【对点训练】1.(2014·全国Ⅰ)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.2.若椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,线段F1F2被抛物线y2=2bx的焦点F分成了3∶1的两段.(1)求椭圆的离心率;(2)过点C(-1,0)的直线l交椭圆于不同两点A,B,且AC=2CB,当△AOB的面积最大时,求直线l的方程.3.已知椭圆C:+=1(a>b>0)的离心率为,且过点.(1)求椭圆C的方程;(2)设与圆O:x2+y2=相切的直线l交椭圆C与A,B两点,求△OAB面积的最大值,及取得最大值时直线l的方程.4.已知椭圆M:+=1(a>0)的一个焦点为F(-1,0),左、右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.(1)当直线l的倾斜角为45°时,求线段CD的长;(2)记△ABD与△ABC的面积分别为S1和S2,求|S1-S2|的最大值.5.已知离心率为的椭圆C:+=1(a>b>0)过点P,与坐标轴不平行的直线l与椭圆C交于A,B两点,其中M为A关于y轴的对称点,N(0,),O为坐标原点.(1)求椭圆C的方程;(2)分别记△PAO,△PBO的面积为S1,S2,当M,N,B三点共线时,求S1·S2的最大值.6.已知焦点为F的抛物线C1:x2=2py(p>0),圆C2:x2+y2=1,直线l与抛物线相切于点P,与圆相切于点Q.(1)当直线l的方程为x-y-=0时,求抛物线C1的方程;(2)记S1,S2分别为△FPQ,△FOQ的面积,求的最小值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com