高中数学高考数学10大专题技巧--专题10 利用空间向量计算线面角的问题(学生版).docx.doc本文件免费下载 【共9页】

高中数学高考数学10大专题技巧--专题10 利用空间向量计算线面角的问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题10 利用空间向量计算线面角的问题(学生版).docx.doc
高中数学高考数学10大专题技巧--专题10 利用空间向量计算线面角的问题(学生版).docx.doc
专题10利用空间向量计算线面角的问题【方法总结】1.直线与平面所成的角如图,直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,直线AB的方向向量为u,平面α的法向量为n,则sinθ=|cos<u,n>|=.2.利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.【例题选讲】考点一棱柱(台)模型[例1]如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥BC,D是A1C1的中点,且AC=BC=AA1=2.(1)求证:BC1∥平面AB1D;(2)求直线BC与平面AB1D所成角的正弦值.[例2]在直三棱柱ABC-A1B1C1中,△ABC为正三角形,点D在棱BC上,且CD=3BD,点E,F分别为棱AB,BB1的中点.(1)证明:A1C∥平面DEF;(2)若A1C⊥EF,求直线A1C1与平面DEF所成的角的正弦值.[例3](2020·北京)如图,在正方体ABCD-A1B1C1D1中,E为BB1的中点.(1)求证:BC1∥平面AD1E;(2)求直线AA1与平面AD1E所成角的正弦值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com[例4](2020·浙江)如图,在三棱台ABC-DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC=2BC.(1)证明:EF⊥DB;(2)求直线DF与平面DBC所成角的正弦值.【对点训练】1.如图,在三棱柱ABC-A1B1C1中,△ABC和△AA1C均是边长为2的等边三角形,点O为AC中点,平面AA1C1C⊥平面ABC.(1)证明:A1O⊥平面ABC;(2)求直线AB与平面A1BC1所成角的正弦值.2.(2020·全国Ⅱ)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.3.斜三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,A1B=,∠A1AB=∠A1AC=60°.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)证明:平面A1BC⊥平面ABC;(2)求直线BC1与平面ABB1A1所成角的正弦值.4.如图,在几何体ABC-A1B1C1中,平面A1ACC1⊥底面ABC,四边形A1ACC1是正方形,B1C1∥BC,Q是A1B的中点,且AC=BC=2B1C1,∠ACB=.(1)证明:B1Q⊥A1C;(2)求直线AC与平面A1BB1所成角的正弦值.5.如图所示,在四棱台ABCD-A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,M为CD的中点,∠BAD=120°,AB=AA1=2A1B1=2.(1)求证:AM⊥平面AA1B1B;(2)求直线DD1与平面A1BD所成角的正弦值.考点二棱(圆)锥模型[例1]如图,在三棱锥A-BCD中,AB=BD=AD=AC=2,△BCD是以BD为斜边的等腰直角三角形,P为AB的中点,E为BD的中点.(1)求证:AE⊥平面BCD;(2)求直线PD与平面ACD所成角的正弦值.[例2](2020·新山东)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.[例3]如图,在四棱锥E-ABCD中,底面ABCD为直角梯形,AB∥CD,BC⊥CD,AB=2BC=2CD.△EAB是以AB为斜边的等腰直角三角形,且平面EAB⊥平面ABCD.点F满足:EF=λEA(λ∈[0,1]).(1)试探究λ为何值时,CE∥平面BDF,并给予证明;(2)在(1)的条件下,求直线AB与平面BDF所成角的正弦值.[例4]如图,在四棱锥E-ABCD中,底面ABCD是圆内接四边形,CB=CD=CE=1,AB=AD=AE=,EC⊥BD.(1)求证:平面BED⊥平面ABCD;(2)若点P在平面ABE内运动,且DP∥平面BEC,求直线DP与平面ABE所成角的正弦值的最大值.[例5](2021·浙江)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,PA=,M,N分别为BC,PC的中点,PD⊥DC,PM⊥MD.(1)证明:AB⊥PM;(2)求直线AN与平面PDM所成角的正弦值.ABCDPMN[例6](2017·浙江)如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
精品解析:2019年上海市宝山区高三上学期期末教学质量监测(一模)数学试题(解析版).docx
精品解析:2019年上海市宝山区高三上学期期末教学质量监测(一模)数学试题(解析版).docx
免费
0下载
高中2023《微专题·小练习》·数学·文科·L-2专练27.docx
高中2023《微专题·小练习》·数学·文科·L-2专练27.docx
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点27 圆锥曲线中的定点、定值问题.docx
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点27 圆锥曲线中的定点、定值问题.docx
免费
30下载
2017年天津高考文科数学试题及答案(Word版).doc
2017年天津高考文科数学试题及答案(Word版).doc
免费
4下载
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点8 三角恒等变换与解三角形.docx
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点8 三角恒等变换与解三角形.docx
免费
27下载
2019年高考数学试卷(文)(新课标Ⅰ)(解析卷) (9).pdf
2019年高考数学试卷(文)(新课标Ⅰ)(解析卷) (9).pdf
免费
0下载
2005年江苏高考数学真题及答案.doc
2005年江苏高考数学真题及答案.doc
免费
1下载
2014年高考数学试卷(文)(北京)(解析卷).pdf
2014年高考数学试卷(文)(北京)(解析卷).pdf
免费
0下载
专题4-三角比和三角函数-沪教版高三数学2021-2022一模考试汇编.docx
专题4-三角比和三角函数-沪教版高三数学2021-2022一模考试汇编.docx
免费
0下载
2023《微专题·小练习》·数学·新教材·XL-3专练 22.docx
2023《微专题·小练习》·数学·新教材·XL-3专练 22.docx
免费
24下载
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (四).doc
二轮专项分层特训卷··高三数学·理科仿真模拟专练 (四).doc
免费
7下载
二轮专项分层特训卷··高三数学·理科主观题专练 (9).doc
二轮专项分层特训卷··高三数学·理科主观题专练 (9).doc
免费
1下载
高中2022·微专题·小练习·数学·理科【统考版】专练1.docx
高中2022·微专题·小练习·数学·理科【统考版】专练1.docx
免费
0下载
高中数学高考数学10大专题技巧--专题33   单变量不等式能成立之参变分离法(学生版).docx.doc
高中数学高考数学10大专题技巧--专题33 单变量不等式能成立之参变分离法(学生版).docx.doc
免费
0下载
2008年高考数学试卷(文)(广东)(空白卷).doc
2008年高考数学试卷(文)(广东)(空白卷).doc
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
免费
14下载
2012年高考数学试卷(文)(新课标)(解析卷) (8).pdf
2012年高考数学试卷(文)(新课标)(解析卷) (8).pdf
免费
0下载
2009年高考数学试卷(理)(陕西)(空白卷).pdf
2009年高考数学试卷(理)(陕西)(空白卷).pdf
免费
0下载
2003年高考数学真题(理科)(湖南自主命题).doc
2003年高考数学真题(理科)(湖南自主命题).doc
免费
12下载
精品解析:上海市金山区2022届高三下学期二模数学试题(解析版).docx
精品解析:上海市金山区2022届高三下学期二模数学试题(解析版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档
确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群