高中数学高考数学10大专题技巧--专题10 含参函数的极值、最值讨论(教师版).docx本文件免费下载 【共16页】

高中数学高考数学10大专题技巧--专题10 含参函数的极值、最值讨论(教师版).docx
高中数学高考数学10大专题技巧--专题10 含参函数的极值、最值讨论(教师版).docx
高中数学高考数学10大专题技巧--专题10 含参函数的极值、最值讨论(教师版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题10含参函数的极值、最值讨论考点一含参函数的极值【例题选讲】[例1]设a>0,函数f(x)=x2-(a+1)x+a(1+lnx).(1)若曲线y=f(x)在(2,f(2))处的切线与直线y=-x+1垂直,求切线方程.(2)求函数f(x)的极值.解析(1)由已知,得f′(x)=x-(a+1)+(x>0),又由题意可知y=f(x)在(2,f(2))处切线的斜率为1,所以f′(2)=1,即2-(a+1)+=1,解得a=0,此时f(2)=2-2=0,故所求的切线方程为y=x-2.(2)f′(x)=x-(a+1)+==(x>0).①当0<a<1时,若x∈(0,a),则f′(x)>0,函数f(x)单调递增;若x∈(a,1),则f′(x)<0,函数f(x)单调递减;若x∈(1,+∞),则f′(x)>0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的极小值点,函数f(x)的极大值是f(a)=-a2+alna,极小值是f(1)=-.②当a=1时,f′(x)=≥0,所以函数f(x)在定义域(0,+∞)内单调递增,此时f(x)没有极值点,故无极值.③当a>1时,若x∈(0,1),则f′(x)>0,函数f(x)单调递增;若x∈(1,a),则f′(x)<0,函数f(x)单调递减;若x∈(a,+∞),则f′(x)>0,函数f(x)单调递增.此时x=1是f(x)的极大值点,x=a是f(x)的极小值点,函数f(x)的极大值是f(1)=-,极小值是f(a)=-a2+alna.综上,当0<a<1时,f(x)的极大值是-a2+alna,极小值是-;当a=1时,f(x)没有极值;当a>1时f(x)的极大值是-,极小值是-a2+alna.[例2]已知函数f(x)=lnx-ax(a∈R).(1)当a=时,求f(x)的极值;(2)讨论函数f(x)在定义域内极值点的个数.解析(1)当a=,时f(x)=lnx-x,函的定域数义为(0,+∞)且f′(x)=-=,令f′(x)=0,得x=2,于是当x化,变时f′(x),f(x)的化情如下表.变况x(0,2)2(2,+∞)f′(x)+0-f(x)ln2-1故f(x)在定域上的大义极值为f(x)大极值=f(2)=ln2-1,无小.极值(2)由(1)知,函的定域数义为(0,+∞),f′(x)=-a=.当a≤0,时f′(x)>0在(0,+∞)上恒成立,函在则数(0,+∞)上增,此函在定域上无点;单调递时数义极值当a>0,若时x∈,则f′(x)>0,若x∈,则f′(x)<0,故函在数x=有大.处极值上可知,综当a≤0,函时数f(x)无点,极值当a>0,函时数y=f(x)有一大点,且个极值为x=.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com[例3]设f(x)=xlnx-ax2+(3a-1)x.(1)若g(x)=f′(x)在[1,2]上单调,求a的取值范围;(2)已知f(x)在x=1处取得极小值,求a的取值范围.解析(1)由f′(x)=lnx-3ax+3a,即g(x)=lnx-3ax+3a,x∈(0,+∞),g′(x)=-3a,①g(x)在[1,2]上单调递增,∴-3a≥0对x∈[1,2]恒成立,即a≤对x∈[1,2]恒成立,得a≤;②g(x)在[1,2]上单调递减,∴-3a≤0对x∈[1,2]恒成立,即a≥对x∈[1,2]恒成立,得a≥,由①②可得a的取值范围为∪.(2)由(1)知,①当a≤0时,f′(x)在(0,+∞)上单调递增,∴x∈(0,1)时,f′(x)<0,f(x)单调递减,x∈(1,+∞)时,f′(x)>0,f(x)单调递增,∴f(x)在x=1处取得极小值,符合题意;②当0<a<时,>1,又f′(x)在上单调递增,∴x∈(0,1)时,f′(x)<0,x∈时,f′(x)>0,∴f(x)在(0,1)上单调递减,在上单调递增,f(x)在x=1处取得极小值,符合题意;③当a=时,=1,f′(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴x∈(0,+∞)时,f′(x)≤0,f(x)单调递减,不合题意;④当a>时,0<<1,当x∈时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,∴f(x)在x=1处取得极大值,不符合题意.综上所述,可得a的取值范围为.[例4](2016·山东)设f(x)=xlnx-ax2+(2a-1)x,a∈R.(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.解析(1)由f′(x)=lnx-2ax+2a,可得g(x)=lnx-2ax+2a,x∈(0,+∞).所以g′(x)=-2a=.当a≤0,x∈(0,+∞)时,g′(x)>0,函数g(x)单调递增;当a>0,x∈时,g′(x)>0,函数g(x)单调递增,x∈时,g′(x)<0,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
2024版《大考卷》全程考评特训卷·数学【新教材】滚动过关检测三.docx
免费
14下载
高中2022·微专题·小练习·数学【新高考】专练45.docx
高中2022·微专题·小练习·数学【新高考】专练45.docx
免费
0下载
高中2022·微专题·小练习·数学·理科【统考版】专练9.docx
高中2022·微专题·小练习·数学·理科【统考版】专练9.docx
免费
0下载
2009年高考数学试卷(理)(四川)(解析卷).pdf
2009年高考数学试卷(理)(四川)(解析卷).pdf
免费
0下载
上海市普陀区2022年高三第一学期期末(一模)学科质量检测数学试卷(word原卷版).docx
上海市普陀区2022年高三第一学期期末(一模)学科质量检测数学试卷(word原卷版).docx
免费
0下载
2014年上海市浦东新区高考数学一模试卷(文科).doc
2014年上海市浦东新区高考数学一模试卷(文科).doc
免费
0下载
2017年高考数学真题(浙江自主命题).doc
2017年高考数学真题(浙江自主命题).doc
免费
1下载
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第6讲 椭圆(二)(含解析).docx
2025年新高考数学复习资料2025届高中数学一轮复习讲义:第九章第6讲 椭圆(二)(含解析).docx
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点21  概率与统计.docx
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点21  概率与统计.docx
免费
8下载
专题6-数列与极限专题-沪教版高三数学2021-2022一模考试汇编.docx
专题6-数列与极限专题-沪教版高三数学2021-2022一模考试汇编.docx
免费
0下载
2016年上海高考理科数学真题(解析版).docx
2016年上海高考理科数学真题(解析版).docx
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练17.docx
高中2024版考评特训卷·数学【新教材】考点练17.docx
免费
0下载
1997年西藏高考文科数学真题及答案.doc
1997年西藏高考文科数学真题及答案.doc
免费
2下载
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word)  课时作业(十三).docx
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word) 课时作业(十三).docx
免费
28下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(三).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(三).docx
免费
0下载
高中2024版《微专题》·数学·新高考专练 15.docx
高中2024版《微专题》·数学·新高考专练 15.docx
免费
0下载
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
2023年高考全国乙卷数学(理)真题(原卷版)word版.docx
免费
19下载
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (9).pdf
2016年高考数学试卷(文)(新课标Ⅱ)(解析卷) (9).pdf
免费
0下载
2007年广东高考文科数学真题及答案.doc
2007年广东高考文科数学真题及答案.doc
免费
29下载
1993年高考数学真题(文科 )(福建自主命题).doc
1993年高考数学真题(文科 )(福建自主命题).doc
免费
15下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群