专题11立体几何中的点面距离问题【方法总结】应用等体积转化法求解点到平面的距离等体积转化法就是通过变换几何体的底面,利用几何体(主要是三棱锥)体积的不同表达形式构造方程来求解相关问题的方法,主要用于立体几何中求解点到面的距离.关键是准确把握三棱锥底面的特征,选择的底面应具备两个特征:一是底面的形状规则,即面积可求;二是底面上的高比较明显,即线面垂直关系比较直接.【例题选讲】[例1](2019·全国Ⅰ)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.[例2]如图,在四棱锥P-ABCD中,底面是边长为2的正方形,PA=PD=,E为PA的中点,点F在PD上且EF⊥平面PCD,M在DC延长线上,FH∥DM,交PM于点H,且FH=1.(1)证明:EF∥平面PBM;(2)求点M到平面ABP的距离.[例3]如图,已知四棱锥P-ABCD的底面ABCD为菱形,且∠ABC=60°,AB=PC=2,PA=PB=.(1)求证:平面PAB⊥平面ABCD;(2)求点D到平面APC的距离.[例4]如图,在单位正方体ABCDA1B1C1D1中,E,F分别是AD,BC1的中点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求证:EF∥平面C1CDD1;(2)在线段A1B上是否存在点G,使EG⊥平面A1BC1?若存在,求点G到平面C1DF的距离;若不存在,请说明理由.[例5]如图1,四边形ABCD为等腰梯形,AB=2,AD=DC=CB=1,将△ADC沿AC折起,使得平面ADC⊥平面ABC,E为AB的中点,连接DE,DB(如图2).(1)求证:BC⊥AD;(2)求点E到平面BCD的距离.[例6]如图,高为1的等腰梯形ABCD中,AM=CD=AB=1.现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接AB,AC.(1)在AB边上是否存在点P,使AD∥平面MPC?(2)当点P为AB边的中点时,求点B到平面MPC的距离.【对点训练】1.(2018·全国Ⅱ)如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.2.(2013·江西)如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=,AA1=3,E为CD上一点,DE=1,EC=3.(1)证明:BE⊥平面BB1C1C;(2)求点B1到平面EA1C1的距离.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.如图,在三棱锥A—BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.(1)求证:平面ABC⊥平面ACD;(2)若E为AB的中点,求点A到平面CED的距离.4.已知三棱锥P-ABC中,AC⊥BC,AC=BC=2,PA=PB=PC=3,O是AB的中点,E是PB的中点.(1)证明:平面PAB⊥平面ABC;(2)求点B到平面OEC的距离.5.在如图所示的几何体中,四边形ABCD是直角梯形,AD∥BC,AB⊥BC,AD=2,AB=3,BC=BE=7,△DCE是边长为6的正三角形.(1)求证:平面DEC⊥平面BDE;(2)求点A到平面BDE的距离.6.如图,在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F分别是线段AB,BC的中点.(1)证明:PF⊥FD;(2)若PA=1,求点E到平面PFD的距离.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com7.如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AD∥BC,CD⊥BC,AD=2,AB=BC=3,PA=4,M为AD的中点,N为PC上一点,且PC=3PN.(1)求证:MN∥平面PAB;(2)求点M到平面PAN的距离.8.如图,在四棱锥P-ABCD中,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(1)求证:PC⊥AD;(2)求点D到平面PAM的距离.9.如图,在四棱锥P-ABCD中,PC⊥平面ABCD,底面ABCD是平行四边形,AB=BC=2a,AC=2a,E是PA的中点.(1)求证:平面BED⊥平面PAC;(2)求点E到平面PBC的距离.10.如图1,在直角梯形ABCP中,CP∥AB,CP⊥BC,AB=BC=CP,D是CP的中点,将△PAD沿AD折起,使点P到达点P′的位置得到图2,点M为棱P′C上的动点.①当M在何处时,平面ADM⊥平面P′BC,并证明;②若AB=2,∠P′DC=135°,证明:点C到平面P′AD的距离等于点P′到平面ABCD的距离,并求出该距离.11.如图1...