高中数学高考数学10大专题技巧--专题14 两个经典不等式的应用(教师版).docx本文件免费下载 【共9页】

高中数学高考数学10大专题技巧--专题14 两个经典不等式的应用(教师版).docx
高中数学高考数学10大专题技巧--专题14 两个经典不等式的应用(教师版).docx
高中数学高考数学10大专题技巧--专题14 两个经典不等式的应用(教师版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题14两个经典不等式的应用逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决问题,降低了思考问题的难度,优化了推理和运算过程.1.对数形式:x≥1+lnx(x>0),当且仅当x=1时,等号成立.2.指数形式:ex≥x+1(x∈R),当且仅当x=0时,等号成立.进一步可得到一组不等式链:ex>x+1>x>1+lnx(x>0,且x≠1).注意:选填题可直接使用,解答题必须先证明后再使用.考点一两个经典不等式的应用1.对数形式:x≥1+lnx(x>0),当且仅当x=1时,等号成立.证明由题意知x>0,令f(x)=x-1-lnx,所以f′(x)=1-=,所以当f′(x)>0时,x>1;当f′(x)<0时,0<x<1,故f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以f(x)有最小值f(1)=0,故有f(x)=x-1-lnx≥f(1)=0,即lnx≤x-1成立.2.指数形式:ex≥x+1(x∈R),当且仅当x=0时,等号成立.证明设f(x)=ex-x-1,则f′(x)=ex-1,由f′(x)=0,得x=0,所以当x<0时,f′(x)<0;当x>0时,f′(x)>0,所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以f(x)≥f(0)=0,即ex-x-1≥0,所以ex≥x+1.【例题选讲】[例1](1)已知对任意x,都有xe2x-ax-x≥1+lnx,则实数a的取值范围是________.答案(-∞,1]解析根据题意可知,x>0,由x·e2x-ax-x≥1+lnx,可得a≤e2x--1(x>0)恒成立,令f(x)=e2x--1,则a≤f(x)min,现证明ex≥x+1恒成立,设g(x)=ex-x-1,g′(x)=ex-1,当g′(x)=0时,解得x=0,当x<0时,g′(x)<0,g(x)单调递减,当x>0时,g′(x)>0,g(x)单调递增,故当x=0时,函数g(x)取得最小值,g(0)=0,所以g(x)≥g(0)=0,即ex-x-1≥0⇔ex≥x+1恒成立,f(x)=e2x--1=-1=-1≥-1=1,所以f(x)min=1,即a≤1.所以实数a的取值范围是(-∞,1].(2)已知函数f(x)=ex-ax-1,g(x)=lnx-ax-1,其中0<a<1,e为自然对数的底数,若∃x0∈(0,+∞),使f(x0)g(x0)>0,则实数a的取值范围是________.答案解析令M(x)=ex-x-1,x∈(0,+∞),则M′(x)=ex-1,当x∈(0,+∞)时,M′(x)>0,所以M(x)在(0,+∞)上单调递增,所以M(x)>M(0)=0,所以ex>x+1.由于0<a<1,所以当x∈(0,+∞)时,f(x)=ex-ax-1>0,故若∃x0∈(0,+∞),使f(x0)g(x0)>0,转化为∃x0∈(0,+∞),g(x0)>0,则g(x0)=lnx0-ax0-1>0,即a<-.令h(x)=-,h′(x)=.当x∈(0,e2)时,h′(x)>0,当x∈(e2,+∞)时,h′(x)<0,所以函数h(x)在(0,e2)上单调递增,在(e2,+∞)上单调递减.所以h(x)≤h(e2)=-=.所以0<a<,即a∈.[例2]函数f(x)=ln(x+1)-ax,g(x)=1-ex.(1)讨论函数f(x)的单调性;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)若f(x)≥g(x)在x∈[0,+∞)上恒成立,求实数a的取值范围.解析(1)函数f(x)的定义域为x∈(-1,+∞),f′(x)=-a=.(ⅰ)当a=0时,f′(x)>0,f(x)在(-1,+∞)上单调递增;(ⅱ)当a≠0时,令f′(x)=0得x==-1,若a<0,则-1<-1,若a>0,则-1>-1.①当a<0时,f′(x)=-a>0,函数f(x)在(-1,+∞)上单调递增;当a>0时,f′(x)=,所以当x∈时,f′(x)>0,f(x)单调递增,当x∈时,f′(x)<0,f(x)单调递减,综上可得,当a≤0时,f(x)在(-1,+∞)上单调递增;当a>0时,f(x)在上单调递增,在上单调递减.(2)设函数h(x)=f(x)-g(x)=ln(x+1)+ex-ax-1,x≥0,则h′(x)=+ex-a,当a≤2时,由ex≥x+1得h′(x)=+ex-a≥+x+1-a≥0,于是,h(x)在[0,+∞)上单调递增,所以h(x)≥h(0)=0恒成立,符合题意;当a>2时,由于x≥0,h(0)=0,令函数m(x)=h′(x),则m′(x)=-+ex(x≥0).所以m′(x)≥0,故h′(x)在[0,+∞)上单调递增,而h′(0)=2-a<0.则存在一个x0>0,使得h′(x0)=0,所以当x∈[0,x0)时,h(x)单调递减,故h(x0)<h(0)=0,不符合题意.综上,实数a的取值范围为(-∞,2].[例3]已知函数f(x)=ex-a.(1)若函数f(x)的图象与直线l:y=x-1相切,求a的值;(2)若f(x)-...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点18 概率.docx
2023《大考卷》二轮专项分层特训卷•数学【新教材】命题点18 概率.docx
免费
22下载
高中数学·必修第二册(RJ-A版)课时作业 WORD  课时作业(十三).doc
高中数学·必修第二册(RJ-A版)课时作业 WORD 课时作业(十三).doc
免费
22下载
2014年全国统一高考数学试卷(文科)(新课标ⅱ).doc
2014年全国统一高考数学试卷(文科)(新课标ⅱ).doc
免费
0下载
2022·微专题·小练习·数学·文科【统考版】专练8.docx
2022·微专题·小练习·数学·文科【统考版】专练8.docx
免费
12下载
2024年高考数学一轮复习(新高考版) 第10章 §10.5 事件的相互独立性与条件概率、全概率公式.pptx
2024年高考数学一轮复习(新高考版) 第10章 §10.5 事件的相互独立性与条件概率、全概率公式.pptx
免费
0下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练80.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练80.docx
免费
4下载
2025届高中数学一轮复习课件:第三章 第4讲幂函数与指、对数式的运算(共59张PPT).pptx
2025届高中数学一轮复习课件:第三章 第4讲幂函数与指、对数式的运算(共59张PPT).pptx
免费
0下载
高中数学·必修第一册(RJ-A版)课时作业WORD  课时作业 48.docx
高中数学·必修第一册(RJ-A版)课时作业WORD 课时作业 48.docx
免费
1下载
2014年上海市奉贤区高考数学一模试卷(文科).doc
2014年上海市奉贤区高考数学一模试卷(文科).doc
免费
0下载
高中2024版考评特训卷·数学【新教材】考点练60.docx
高中2024版考评特训卷·数学【新教材】考点练60.docx
免费
0下载
2000年山东高考理科数学真题及答案.doc
2000年山东高考理科数学真题及答案.doc
免费
11下载
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】2.4.docx
2023《大考卷》二轮专项分层特训卷•数学·理科【统考版】2.4.docx
免费
4下载
2025年新高考数学复习资料3.2 函数的单调性与奇偶性(含答案).docx
2025年新高考数学复习资料3.2 函数的单调性与奇偶性(含答案).docx
免费
0下载
2024年新高考数学复习资料第03讲 幂函数与二次函数(讲义)(解析版).docx
2024年新高考数学复习资料第03讲 幂函数与二次函数(讲义)(解析版).docx
免费
0下载
专题04 三角函数与解三角形(三大类型题)精选15区真题(解析版).docx
专题04 三角函数与解三角形(三大类型题)精选15区真题(解析版).docx
免费
0下载
1996年上海高考文科数学真题及答案.doc
1996年上海高考文科数学真题及答案.doc
免费
6下载
2024年新高考数学复习资料专题07 三角函数的图象与性质综合(原卷版).docx
2024年新高考数学复习资料专题07 三角函数的图象与性质综合(原卷版).docx
免费
0下载
2020年高考数学试卷(文)(新课标Ⅱ)(解析卷) (5).pdf
2020年高考数学试卷(文)(新课标Ⅱ)(解析卷) (5).pdf
免费
0下载
2025届高中数学一轮复习课件:第九章 第11讲 第1课时求值与证明问题(共21张ppt).pptx
2025届高中数学一轮复习课件:第九章 第11讲 第1课时求值与证明问题(共21张ppt).pptx
免费
0下载
二轮专项分层特训卷··高三数学·文科函数与导数(12).doc
二轮专项分层特训卷··高三数学·文科函数与导数(12).doc
免费
7下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群