专题06 数列(三大题型,16区二模新题速递)(解析版).docx本文件免费下载 【共25页】

专题06 数列(三大题型,16区二模新题速递)(解析版).docx
专题06 数列(三大题型,16区二模新题速递)(解析版).docx
专题06 数列(三大题型,16区二模新题速递)(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题06数列(三大题型,16区二模新题速递)选题列表2024·上海杨浦·二模2024·上海奉贤·二模2024·上海浦东·二模2024·上海青浦·二模2024·上海黄浦·二模2024·上海闵行·二模2024·上海普陀·二模2024·上海金山·二模2024·上海徐汇·二模2024·上海静安·二模2024·上海松江·二模2024·上海长宁·二模2024·上海嘉定·二模2024·上海崇明·二模2024·上海虹口·二模2024·上海宝山·二模汇编目录题型一:等差数列及其求和....................................................................................................................................1题型二:等比数列及其求和....................................................................................................................................6题型三:数列极限及新定义问题..........................................................................................................................13一、题型一:等差数列及其求和小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com1.(23-24高三下·上海浦东新·期中)设,记,令有穷数列为零点的个数,则有以下两个结论:①存在,使得为常数列;②存在,使得为公差不为零的等差数列.那么()A.①正确,②错误B.①错误,②正确C.①②都正确D.①②都错误【答案】C【分析】对于①,列举验证,对于②,列举验证.【详解】当时,,此时,,此时,,此时,故存在,使为常数列;①正确;设,则有个零点,则在的每个区间内各至少一个零点,故至少有个零点,因为是一个次函数,故最多有个零点,因此有且仅有个零点,同理,有且仅有个零点,,有且仅有个零点,故,所以是公差为的等差数列,故②正确.故选:C.2.(2024·上海松江·二模)已知等差数列的公差为2,前项和为,若,则使得成立的的最大值为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】【分析】根据题意,列出方程求得,得到且,结合,列出不等式,即可求解.【详解】由等差数列的公差为2,前项和为,若,可得,解得,所以,且,因为,即,整理得,解得,因为,所以使得成立的的最大值为.故答案为:.3.(2024·上海杨浦·二模)已知实数满足:①;②存在实数,使得,,是等差数列,,,也是等差数列.则实数的取值范围是.【答案】【分析】设等差数列的公差为,根据给定条件,结合三角恒等变换化简得,由正切函数性质可得随增大而增大,再由的临界值点得,代入利用二倍角的余弦求解即得.【详解】设等差数列的公差为,,依题意,,于是,整理得,即,因此,即有,则随增大而增大,而当,时,到达时是临界值点,此时,代入得,即,整理得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com而,解得,则,即,所以实数的取值范围是.故答案为:【点睛】关键点点睛:利用三角恒等变换化简所列式子,借助函数单调性分析的临界值点是解决本问题的关键.4.(2024·上海杨浦·二模)某钢材公司积压了部分圆钢,经清理知共有2024根,每根圆钢的直径为10厘米.现将它们堆放在一起.若堆成纵断面为等腰梯形(如图每一层的根数比上一层根数多1根),且为考虑安全隐患,堆放高度不得高于米,若堆放占用场地面积最小,则最下层圆钢根数为.【答案】134【分析】由题设信息,第一层有根,共有层,利用等差数列前n项和公式列出关系式,再借助整除的思想分析计算得解.【详解】设第一层有根,共有层,则,,显然和中一个奇数一个偶数,则或或,即或或,显然每增加一层高度增加厘米,当时,厘米厘米,此时最下层有根;当时,厘米厘米,此时最下层有根;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com当时,厘米,超过米,所以堆放占用场地面积最小时,最下层圆钢根数为根.故答案为:1345.(2024·上海黄浦·二模)已知数列是给定的等差数列,其前项和为,若,且当与时,取得最大值,则的值为.【答...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
免费
0下载
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
免费
0下载
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
免费
0下载
2023年新课标全国Ⅰ卷数学真题.docx
2023年新课标全国Ⅰ卷数学真题.docx
免费
0下载
2023高考真题 新高考II卷数学-解析 .pdf
2023高考真题 新高考II卷数学-解析 .pdf
免费
12下载
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
免费
0下载
2018年上海市高考数学试卷(1)往年高考真题.doc
2018年上海市高考数学试卷(1)往年高考真题.doc
免费
0下载
2025年新高考数学复习资料提优点4 必要性探路.pptx
2025年新高考数学复习资料提优点4 必要性探路.pptx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
免费
0下载
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
免费
0下载
2014年浙江省高考数学试卷(理科).doc
2014年浙江省高考数学试卷(理科).doc
免费
1下载
专题06 平面向量(15区新题速递)(解析版).docx
专题06 平面向量(15区新题速递)(解析版).docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
2012年高考数学试卷(理)(上海)(解析卷).doc
2012年高考数学试卷(理)(上海)(解析卷).doc
免费
0下载
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群