专题01 集合与常用逻辑用语(解析版).docx本文件免费下载 【共16页】

专题01 集合与常用逻辑用语(解析版).docx
专题01 集合与常用逻辑用语(解析版).docx
专题01 集合与常用逻辑用语(解析版).docx
五年(2019-2023)年高考真题分项汇编专题01集合与常用逻辑用语集合常考题型一般为选择题,难度较小,属于送分题。逻辑词一般会与其他数列,三角函数,立体几何等知识点相结合,是一种工具,出现的题目相对比较综合,难度中等。一般的出题类型为考点01元素、集合之间的关系1.(2023·全国·统考高考真题)设集合,,若,则().A.2B.1C.D.【答案】B【分析】根据包含关系分和两种情况讨论,运算求解即可.【详解】因为,则有:若,解得,此时,,不符合题意;若,解得,此时,,符合题意;综上所述:.故选:B.2.(2022·全国·统考高考真题)设全集,集合M满足,则()A.B.C.D.【答案】A【分析】先写出集合,然后逐项验证即可【详解】由题知,对比选项知,正确,错误故选:考点02集合之间交并补运算1.(2023·全国·统考高考真题)已知集合,,则()A.B.C.D.2【答案】C【分析】方法一:由一元二次不等式的解法求出集合,即可根据交集的运算解出.方法二:将集合中的元素逐个代入不等式验证,即可解出.【详解】方法一:因为,而,所以.故选:C.方法二:因为,将代入不等式,只有使不等式成立,所以.故选:C.2.(2023·全国·统考高考真题)设全集,集合,则()A.B.C.D.【答案】A【分析】由题意可得的值,然后计算即可.【详解】由题意可得,则.故选:A.3.(2023·全国·统考高考真题)设集合,集合,,则()A.B.C.D.【答案】A【分析】由题意逐一考查所给的选项运算结果是否为即可.【详解】由题意可得,则,选项A正确;,则,选项B错误;,则或,选项C错误;或,则或,选项D错误;故选:A.4.(2023·全国·统考高考真题)设全集,集合,则()A.B.C.D.【答案】A【分析】利用集合的交并补运算即可得解.【详解】因为全集,集合,所以,又,所以,故选:A.5.(2023·全国·统考高考真题)设全集,集合,()A.B.C.D.【答案】A【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集,,所以,.故选:A.6.(2022·全国·统考高考真题)集合,则()A.B.C.D.【答案】A【分析】根据集合的交集运算即可解出.【详解】因为,,所以.故选:A.7.(2022·全国·统考高考真题)设集合,则()A.B.C.D.【答案】A【分析】根据集合的交集运算即可解出.【详解】因为,,所以.故选:A.8.(2022·全国·统考高考真题)设全集,集合,则()A.B.C.D.【答案】D【分析】解方程求出集合B,再由集合的运算即可得解.【详解】由题意,,所以,所以.故选:D.9.(2021·全国·统考高考真题)已知全集,集合,则()A.B.C.D.【答案】A【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:,则.故选:A.10.(2021·全国·统考高考真题)已知集合,,则()A.B.C.D.【答案】C【分析】分析可得,由此可得出结论.【详解】任取,则,其中,所以,,故,因此,.故选:C.11.(2021·全国·高考真题)设集合,则()A.B.C.D.【答案】B【分析】求出集合后可求.【详解】,故,故选:B.12.(2021·全国·统考高考真题)设集合,则()A.B.C.D.【答案】B【分析】根据交集定义运算即可【详解】因为,所以,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.13.(2020·全国·统考高考真题)已知集合则()A.B.C.D.【答案】D【分析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得,得到结果.【详解】由解得,所以,又因为,所以,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.14.(2020·全国·统考高考真题)设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4【答案】B【分析】由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.【详解】求解二次不等式可得:,求解一次不等式可得:.由于,故:,解得:.故选:B.【点睛】本题主要考查交集的运算,不等式的解法等知识,意...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
高中数学高考数学10大专题技巧--专题五 三角恒等变换(方法篇)(教师版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
高中数学高考数学10大专题技巧--专题07 立体几何中空间角的计算(教师版).docx
免费
0下载
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
2024年新高考数学复习资料大题培优02 数列综合大题归类( 11大题型)(原卷版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
2018年高考数学试卷(文)(新课标Ⅱ)(解析卷) (7).pdf
免费
0下载
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
2022年高考数学试卷(文)(全国甲卷)(解析卷).pdf
免费
0下载
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
2024年新高考数学复习资料跟踪训练03 空间直线、平面的平行(解析版).docx
免费
0下载
2023年新课标全国Ⅰ卷数学真题.docx
2023年新课标全国Ⅰ卷数学真题.docx
免费
0下载
2023高考真题 新高考II卷数学-解析 .pdf
2023高考真题 新高考II卷数学-解析 .pdf
免费
12下载
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
2015年上海市徐汇区、金山区、松江区高考数学二模试卷(文科).doc
免费
0下载
2018年上海市高考数学试卷(1)往年高考真题.doc
2018年上海市高考数学试卷(1)往年高考真题.doc
免费
0下载
2025年新高考数学复习资料提优点4 必要性探路.pptx
2025年新高考数学复习资料提优点4 必要性探路.pptx
免费
0下载
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
高中2024版考评特训卷·数学·文科【统考版】单元检测(十).docx
免费
0下载
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.pptx
免费
0下载
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
精品解析:上海市崇明区2024届高三一模数学试题(原卷版).docx
免费
0下载
2014年浙江省高考数学试卷(理科).doc
2014年浙江省高考数学试卷(理科).doc
免费
1下载
专题06 平面向量(15区新题速递)(解析版).docx
专题06 平面向量(15区新题速递)(解析版).docx
免费
0下载
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
2024年高考数学试卷(文)(全国甲卷)(空白卷) (1).pdf
免费
0下载
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
2024年新高考数学复习资料2024年高考数学一轮复习(新高考版) 第8章 §8.12 圆锥曲线中定点与定值问题.docx
免费
0下载
2012年高考数学试卷(理)(上海)(解析卷).doc
2012年高考数学试卷(理)(上海)(解析卷).doc
免费
0下载
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
上海市金山区2020年高三第一学期期末(一模)数学答案.doc
免费
0下载
我的小文库
实名认证
内容提供者

提供高质量免费文档试卷下载,如果满意请告诉您身边的人,如果不满意请告诉我们,您的意见对于我们很重要,是我们不断进步的动力

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群