小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题19《图形的运动》全章复习巩固【目标导向】1、通过具体实例认识平移、旋转和翻折,探索它们的基本性质,理解变换后的图形与原图形的对应特点.2、理解平移、旋转和翻折三种变换之间的区别和联系,会判断所给图形是旋转对称图形、中心对称图形还是轴对称图形.3、能够按要求作出简单变换后的图形,欣赏图形运动在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【知识点梳理】要点一、图形的平移平移的概念将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移.如图:平移三角形ABC就可以得到三角形A′B′C′,点A和点A′,点B和B′,点C和点C′是对应点,线段AB和AB′,BC和B′C′,AC和A′C′是对应线段,∠A与∠A′,∠B与∠B′∠C与∠C′是对应角.平移的性质图形平移后,对应点之间的距离、对应线段的长度、对应角的大小相等.图形平移后,图形的大小、形状都不变。要点诠释:1、平移后各对应点之间的距离叫做图形平移的距离.2、平移的两个要素:平移的方向和平移的距离.要点二、图形的旋转旋转的概念在平面内,将一个图形上的所有点绕一个定点按照某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心(如点O),转动的角度叫做旋转角(如∠AOA′).如图:三角形A′B′C′是三角形ABC绕点O旋转所得,则点A和点A′,点B和B′,点C和点C′是对应点,线段AB和AB′,BC和B′C′,AC和A′C′是对应线段,,∠BOB′,∠COC′是旋转角.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.OA′ABCB′C′•C'B'A'ABC小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com旋转的性质(1)对应点到旋转中心的距离相等(OA=OA′);(2)对应线段的长度相等(AB=AB′);(3)对应点与旋转中心所连线段的夹角等于旋转角(∠AOA′);要点诠释:1、图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.2、旋转前后图形的大小和形状没有改变.旋转对称图形与中心对称图形的比较:中心对称把一个图形绕着某一个点旋转180°后,和另一个图形重合,那么叫做这两个图形关于这个点对称也叫做这两个图形中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.要点诠释:1、中心对称是旋转角为180°的旋转对称;2、寻找对称中心,只需分别联结两对对应点,所得两条直线的交点就是对称中心;3、对称点所连线段经过对称中心,而且被对称中心平分.要点三、图形的翻折中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.轴对称把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称轴.两个图形中的对应点,叫做关于这条直线的对称点.OA′B′C′BCA小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com要点诠释:1.轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.2.成轴对称的两个图形对应线段的长度和对应角的大小相等,他们的形状相同,大小不变.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.对称轴的作法在成轴对称的两个图形中,分别联结两对对应点,取中点,联结两个重点所得的直线就是对称轴.要点诠释:在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.如果两个图形的对应点连线被同一条直线垂直平分,那么这两...