小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com特训14同构思想在解析几何的应用(五大题型)数学中的同构式是指除了变量不同,而结构相同的表达式,下面提供其理论基础:若实数①a,b分别满足f(a)=0,f(b)=0,由此a,b可视为方程f(x)=0的两个根.——双切线、斜率和(积)为定值时,恒过定点问题的核心思路.如果②A(x1,y₁),B(x₂,y₂)满足的方程结构相同,则A,B为方程所表示的曲线上的两点.特别地,若A(x₁,y),B(x₂,y₂)满足ax1+by1+c=0,ax₂+by₂+c=0,则直线AB的方程为ax+by+c=0.——切点弦方程推导的核心思路.思维点拨:同构思想是数学中代数处理的一种重要思想,其关键在于发现代数式子结构的相似性,对其进行代数变形的统一构造处理.同构思想在解析几何中的应用非常广泛,比如斜率和、斜率积为定值,恒过定点,切点弦,双切线等问题,使用同构思想可以大大简化运算,实现数与形的完美结合.目录:01定点问题02定值问题03定比分点问题04双切线问题05切点弦问题01定点问题1.已知椭圆的左、右焦点别为,,离心率为,过点的动直线l交E于A,B两点,点A在x轴上方,且l不与x轴垂直,的周长为,直线与E交于另一点C,直线与E交于另一点D,点P为椭圆E的下顶点,如图.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求E的方程;(2)证明:直线CD过定点.2.在平面直角坐标系中,抛物线的焦点到准线的距离等于椭圆的短轴长,点在抛物线上,圆(其中).(1)若为圆上的动点,求线段长度的最小值;(2)设是抛物线上位于第一象限的一点,过作圆的两条切线,分别交抛物线于点.证明:直线经过定点.3.阅读材料:到角公式是解析几何中的一个术语,用于解决两直线对称的问题“”.其内容为:若将直线绕与的交点逆时针方向旋转到与直线第一次重合时所转的角为,则称为到的角,当直线与不垂直且斜率都存在时,(其中分别为直线和的斜率).结合阅读材料,回答下述问题:已知椭圆的左、右焦点分别为为椭圆上一点,,四边形的面积为为坐标原点.(1)求椭圆的方程;(2)求的角平分线所在的直线的方程;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(3)过点的且斜率存在的直线分别与椭圆交于点(均异于点),若点到直线的距离相等,证明:直线过定点.02定值问题4.如图,在平面直角坐标系中,双曲线的上下焦点分别为,.已知点和都在双曲线上,其中为双曲线的离心率.(1)求双曲线的方程;(2)设是双曲线上位于轴右方的两点,且直线与直线平行,与交于点.(i)若,求直线的斜率;(ii)求证:是定值.5.已知双曲线:的离心率为,点在双曲线上.过的左焦点F作直线交的左支于A、B两点.(1)求双曲线的方程.(2)若,试问:是否存在直线l,使得点M在以AB为直径的圆上?若存在出直线l的方程;若不存在,说明理由.(3)点,直线交直线于点.设直线、的斜率分别、,求证:为定值.6.已知抛物线的顶点是椭圆的中心,焦点与该椭圆的右焦点重合.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求抛物线的方程;(2)已知动直线过点,交抛物线于、两点,坐标原点为中点,求证:①;是否存在垂直于②轴的直线被以为直径的圆所截得的弦长恒为定值?如果存在,求出的方程;如果不存在,说明理由.03定比分点问题7.已知抛物线经过点,直线与抛物线有两个不同的交点,直线交轴于,直线交轴于.(1)若直线过点,求直线的斜率的取值范围;(2)若直线过抛物线的焦点,交轴于点,求的值;(3)若直线过点,设,求的值.8.椭圆:的离心率,短轴的两个端点分别为、(位于上方),焦点为、,四边形的内切圆半径为.(1)求椭圆的方程;(2)过点的直线交于M、N两点(M位于P与N之间),记、的面积分别为、,令,,求的取值范围.9.已知椭圆的一个焦点为,其左顶点为A,上顶点为B,且到直线的距离为(O为坐标原点).小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求C的方程;(2)若椭圆,则称椭圆E为椭圆C的倍相似椭圆.已知椭圆E是椭圆C的3倍相似椭圆,直线与椭圆C,E交于四点(依次为M,N,P,Q,如图),且,...